Database
BASIC CATEGORY THEORY
Categories
Monomorphisms and epimorphisms
df-epi
Metamath Proof Explorer
Description: Function returning the epimorphisms of the category c . JFM CAT_1
def. 11. (Contributed by FL , 8-Aug-2008) (Revised by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-epi
⊢ Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cepi
⊢ Epi
1
vc
⊢ 𝑐
2
ccat
⊢ Cat
3
cmon
⊢ Mono
4
coppc
⊢ oppCat
5
1
cv
⊢ 𝑐
6
5 4
cfv
⊢ ( oppCat ‘ 𝑐 )
7
6 3
cfv
⊢ ( Mono ‘ ( oppCat ‘ 𝑐 ) )
8
7
ctpos
⊢ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) )
9
1 2 8
cmpt
⊢ ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )
10
0 9
wceq
⊢ Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )