Metamath Proof Explorer


Definition df-epi

Description: Function returning the epimorphisms of the category c . JFM CAT_1 def. 11. (Contributed by FL, 8-Aug-2008) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-epi Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cepi Epi
1 vc 𝑐
2 ccat Cat
3 cmon Mono
4 coppc oppCat
5 1 cv 𝑐
6 5 4 cfv ( oppCat ‘ 𝑐 )
7 6 3 cfv ( Mono ‘ ( oppCat ‘ 𝑐 ) )
8 7 ctpos tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) )
9 1 2 8 cmpt ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )
10 0 9 wceq Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) )