| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqg |
⊢ ~QG |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vi |
⊢ 𝑖 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
vy |
⊢ 𝑦 |
| 6 |
4
|
cv |
⊢ 𝑥 |
| 7 |
5
|
cv |
⊢ 𝑦 |
| 8 |
6 7
|
cpr |
⊢ { 𝑥 , 𝑦 } |
| 9 |
|
cbs |
⊢ Base |
| 10 |
1
|
cv |
⊢ 𝑟 |
| 11 |
10 9
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 12 |
8 11
|
wss |
⊢ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) |
| 13 |
|
cminusg |
⊢ invg |
| 14 |
10 13
|
cfv |
⊢ ( invg ‘ 𝑟 ) |
| 15 |
6 14
|
cfv |
⊢ ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) |
| 16 |
|
cplusg |
⊢ +g |
| 17 |
10 16
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
| 18 |
15 7 17
|
co |
⊢ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) |
| 19 |
3
|
cv |
⊢ 𝑖 |
| 20 |
18 19
|
wcel |
⊢ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 |
| 21 |
12 20
|
wa |
⊢ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) |
| 22 |
21 4 5
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } |
| 23 |
1 3 2 2 22
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } ) |
| 24 |
0 23
|
wceq |
⊢ ~QG = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } ) |