Metamath Proof Explorer


Definition df-erl

Description: Define the operation giving the equivalence relation used in the localization of a ring r by a set s . Two pairs a = <. x , y >. and b = <. z , w >. are equivalent if there exists t e. s such that t x. ( x x. w - z x. y ) = 0 . This corresponds to the usual comparison of fractions x / y and z / w . (Contributed by Thierry Arnoux, 28-Apr-2025)

Ref Expression
Assertion df-erl ~RL = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cerl ~RL
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 cmulr .r
5 1 cv 𝑟
6 5 4 cfv ( .r𝑟 )
7 vx 𝑥
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑟 )
10 3 cv 𝑠
11 9 10 cxp ( ( Base ‘ 𝑟 ) × 𝑠 )
12 vw 𝑤
13 va 𝑎
14 vb 𝑏
15 13 cv 𝑎
16 12 cv 𝑤
17 15 16 wcel 𝑎𝑤
18 14 cv 𝑏
19 18 16 wcel 𝑏𝑤
20 17 19 wa ( 𝑎𝑤𝑏𝑤 )
21 vt 𝑡
22 21 cv 𝑡
23 7 cv 𝑥
24 c1st 1st
25 15 24 cfv ( 1st𝑎 )
26 c2nd 2nd
27 18 26 cfv ( 2nd𝑏 )
28 25 27 23 co ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) )
29 csg -g
30 5 29 cfv ( -g𝑟 )
31 18 24 cfv ( 1st𝑏 )
32 15 26 cfv ( 2nd𝑎 )
33 31 32 23 co ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) )
34 28 33 30 co ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) )
35 22 34 23 co ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) )
36 c0g 0g
37 5 36 cfv ( 0g𝑟 )
38 35 37 wceq ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 )
39 38 21 10 wrex 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 )
40 20 39 wa ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) )
41 40 13 14 copab { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) }
42 12 11 41 csb ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) }
43 7 6 42 csb ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) }
44 1 3 2 2 43 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } )
45 0 44 wceq ~RL = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } )