Metamath Proof Explorer


Definition df-euf

Description: Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025) Use its index-independent form eufid instead. (New usage is discouraged.)

Ref Expression
Assertion df-euf EuclF = Slot 2 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceuf EuclF
1 c2 2
2 c1 1
3 1 2 cdc 2 1
4 3 cslot Slot 2 1
5 0 4 wceq EuclF = Slot 2 1