| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ceupth | ⊢ EulerPaths | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vf | ⊢ 𝑓 | 
						
							| 4 |  | vp | ⊢ 𝑝 | 
						
							| 5 | 3 | cv | ⊢ 𝑓 | 
						
							| 6 |  | ctrls | ⊢ Trails | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Trails ‘ 𝑔 ) | 
						
							| 9 | 4 | cv | ⊢ 𝑝 | 
						
							| 10 | 5 9 8 | wbr | ⊢ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 | 
						
							| 11 |  | cc0 | ⊢ 0 | 
						
							| 12 |  | cfzo | ⊢ ..^ | 
						
							| 13 |  | chash | ⊢ ♯ | 
						
							| 14 | 5 13 | cfv | ⊢ ( ♯ ‘ 𝑓 ) | 
						
							| 15 | 11 14 12 | co | ⊢ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) | 
						
							| 16 |  | ciedg | ⊢ iEdg | 
						
							| 17 | 7 16 | cfv | ⊢ ( iEdg ‘ 𝑔 ) | 
						
							| 18 | 17 | cdm | ⊢ dom  ( iEdg ‘ 𝑔 ) | 
						
							| 19 | 15 18 5 | wfo | ⊢ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) | 
						
							| 20 | 10 19 | wa | ⊢ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) ) | 
						
							| 21 | 20 3 4 | copab | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) ) } | 
						
							| 22 | 1 2 21 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) ) } ) | 
						
							| 23 | 0 22 | wceq | ⊢ EulerPaths  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) ) } ) |