Metamath Proof Explorer


Definition df-eupth

Description: Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion df-eupth EulerPaths = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceupth EulerPaths
1 vg 𝑔
2 cvv V
3 vf 𝑓
4 vp 𝑝
5 3 cv 𝑓
6 ctrls Trails
7 1 cv 𝑔
8 7 6 cfv ( Trails ‘ 𝑔 )
9 4 cv 𝑝
10 5 9 8 wbr 𝑓 ( Trails ‘ 𝑔 ) 𝑝
11 cc0 0
12 cfzo ..^
13 chash
14 5 13 cfv ( ♯ ‘ 𝑓 )
15 11 14 12 co ( 0 ..^ ( ♯ ‘ 𝑓 ) )
16 ciedg iEdg
17 7 16 cfv ( iEdg ‘ 𝑔 )
18 17 cdm dom ( iEdg ‘ 𝑔 )
19 15 18 5 wfo 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 )
20 10 19 wa ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) )
21 20 3 4 copab { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) }
22 1 2 21 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } )
23 0 22 wceq EulerPaths = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } )