Step |
Hyp |
Ref |
Expression |
0 |
|
ceupth |
⊢ EulerPaths |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
vp |
⊢ 𝑝 |
5 |
3
|
cv |
⊢ 𝑓 |
6 |
|
ctrls |
⊢ Trails |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Trails ‘ 𝑔 ) |
9 |
4
|
cv |
⊢ 𝑝 |
10 |
5 9 8
|
wbr |
⊢ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 |
11 |
|
cc0 |
⊢ 0 |
12 |
|
cfzo |
⊢ ..^ |
13 |
|
chash |
⊢ ♯ |
14 |
5 13
|
cfv |
⊢ ( ♯ ‘ 𝑓 ) |
15 |
11 14 12
|
co |
⊢ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) |
16 |
|
ciedg |
⊢ iEdg |
17 |
7 16
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
18 |
17
|
cdm |
⊢ dom ( iEdg ‘ 𝑔 ) |
19 |
15 18 5
|
wfo |
⊢ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) |
20 |
10 19
|
wa |
⊢ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) |
21 |
20 3 4
|
copab |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } |
22 |
1 2 21
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) |
23 |
0 22
|
wceq |
⊢ EulerPaths = ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) |