Metamath Proof Explorer


Definition df-evl

Description: A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion df-evl eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cevl eval
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 1 cv 𝑖
5 ces evalSub
6 3 cv 𝑟
7 4 6 5 co ( 𝑖 evalSub 𝑟 )
8 cbs Base
9 6 8 cfv ( Base ‘ 𝑟 )
10 9 7 cfv ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) )
11 1 3 2 2 10 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) )
12 0 11 wceq eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) )