Step |
Hyp |
Ref |
Expression |
0 |
|
ces |
⊢ evalSub |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
ccrg |
⊢ CRing |
5 |
|
cbs |
⊢ Base |
6 |
3
|
cv |
⊢ 𝑠 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
8 |
|
vb |
⊢ 𝑏 |
9 |
|
vr |
⊢ 𝑟 |
10 |
|
csubrg |
⊢ SubRing |
11 |
6 10
|
cfv |
⊢ ( SubRing ‘ 𝑠 ) |
12 |
1
|
cv |
⊢ 𝑖 |
13 |
|
cmpl |
⊢ mPoly |
14 |
|
cress |
⊢ ↾s |
15 |
9
|
cv |
⊢ 𝑟 |
16 |
6 15 14
|
co |
⊢ ( 𝑠 ↾s 𝑟 ) |
17 |
12 16 13
|
co |
⊢ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) |
18 |
|
vw |
⊢ 𝑤 |
19 |
|
vf |
⊢ 𝑓 |
20 |
18
|
cv |
⊢ 𝑤 |
21 |
|
crh |
⊢ RingHom |
22 |
|
cpws |
⊢ ↑s |
23 |
8
|
cv |
⊢ 𝑏 |
24 |
|
cmap |
⊢ ↑m |
25 |
23 12 24
|
co |
⊢ ( 𝑏 ↑m 𝑖 ) |
26 |
6 25 22
|
co |
⊢ ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) |
27 |
20 26 21
|
co |
⊢ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) |
28 |
19
|
cv |
⊢ 𝑓 |
29 |
|
cascl |
⊢ algSc |
30 |
20 29
|
cfv |
⊢ ( algSc ‘ 𝑤 ) |
31 |
28 30
|
ccom |
⊢ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) |
32 |
|
vx |
⊢ 𝑥 |
33 |
32
|
cv |
⊢ 𝑥 |
34 |
33
|
csn |
⊢ { 𝑥 } |
35 |
25 34
|
cxp |
⊢ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) |
36 |
32 15 35
|
cmpt |
⊢ ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) |
37 |
31 36
|
wceq |
⊢ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) |
38 |
|
cmvr |
⊢ mVar |
39 |
12 16 38
|
co |
⊢ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) |
40 |
28 39
|
ccom |
⊢ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) |
41 |
|
vg |
⊢ 𝑔 |
42 |
41
|
cv |
⊢ 𝑔 |
43 |
33 42
|
cfv |
⊢ ( 𝑔 ‘ 𝑥 ) |
44 |
41 25 43
|
cmpt |
⊢ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) |
45 |
32 12 44
|
cmpt |
⊢ ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
46 |
40 45
|
wceq |
⊢ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
47 |
37 46
|
wa |
⊢ ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
48 |
47 19 27
|
crio |
⊢ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
49 |
18 17 48
|
csb |
⊢ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
50 |
9 11 49
|
cmpt |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
51 |
8 7 50
|
csb |
⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
52 |
1 3 2 4 51
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
53 |
0 52
|
wceq |
⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |