| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ces1 | ⊢  evalSub1 | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑠 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑠 ) | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ( Base ‘ 𝑠 ) | 
						
							| 8 |  | vb | ⊢ 𝑏 | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 | 8 | cv | ⊢ 𝑏 | 
						
							| 11 |  | cmap | ⊢  ↑m | 
						
							| 12 |  | c1o | ⊢ 1o | 
						
							| 13 | 10 12 11 | co | ⊢ ( 𝑏  ↑m  1o ) | 
						
							| 14 | 10 13 11 | co | ⊢ ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) ) | 
						
							| 15 | 9 | cv | ⊢ 𝑥 | 
						
							| 16 |  | vy | ⊢ 𝑦 | 
						
							| 17 | 16 | cv | ⊢ 𝑦 | 
						
							| 18 | 17 | csn | ⊢ { 𝑦 } | 
						
							| 19 | 12 18 | cxp | ⊢ ( 1o  ×  { 𝑦 } ) | 
						
							| 20 | 16 10 19 | cmpt | ⊢ ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) | 
						
							| 21 | 15 20 | ccom | ⊢ ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) | 
						
							| 22 | 9 14 21 | cmpt | ⊢ ( 𝑥  ∈  ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) ) | 
						
							| 23 |  | ces | ⊢  evalSub | 
						
							| 24 | 12 5 23 | co | ⊢ ( 1o  evalSub  𝑠 ) | 
						
							| 25 | 3 | cv | ⊢ 𝑟 | 
						
							| 26 | 25 24 | cfv | ⊢ ( ( 1o  evalSub  𝑠 ) ‘ 𝑟 ) | 
						
							| 27 | 22 26 | ccom | ⊢ ( ( 𝑥  ∈  ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑠 ) ‘ 𝑟 ) ) | 
						
							| 28 | 8 6 27 | csb | ⊢ ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( ( 𝑥  ∈  ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑠 ) ‘ 𝑟 ) ) | 
						
							| 29 | 1 3 2 7 28 | cmpo | ⊢ ( 𝑠  ∈  V ,  𝑟  ∈  𝒫  ( Base ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( ( 𝑥  ∈  ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑠 ) ‘ 𝑟 ) ) ) | 
						
							| 30 | 0 29 | wceq | ⊢  evalSub1   =  ( 𝑠  ∈  V ,  𝑟  ∈  𝒫  ( Base ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( ( 𝑥  ∈  ( 𝑏  ↑m  ( 𝑏  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝑏  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑠 ) ‘ 𝑟 ) ) ) |