Step |
Hyp |
Ref |
Expression |
0 |
|
ces1 |
⊢ evalSub1 |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑠 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑠 ) |
8 |
|
vb |
⊢ 𝑏 |
9 |
|
vx |
⊢ 𝑥 |
10 |
8
|
cv |
⊢ 𝑏 |
11 |
|
cmap |
⊢ ↑m |
12 |
|
c1o |
⊢ 1o |
13 |
10 12 11
|
co |
⊢ ( 𝑏 ↑m 1o ) |
14 |
10 13 11
|
co |
⊢ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) |
15 |
9
|
cv |
⊢ 𝑥 |
16 |
|
vy |
⊢ 𝑦 |
17 |
16
|
cv |
⊢ 𝑦 |
18 |
17
|
csn |
⊢ { 𝑦 } |
19 |
12 18
|
cxp |
⊢ ( 1o × { 𝑦 } ) |
20 |
16 10 19
|
cmpt |
⊢ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) |
21 |
15 20
|
ccom |
⊢ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) |
22 |
9 14 21
|
cmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) |
23 |
|
ces |
⊢ evalSub |
24 |
12 5 23
|
co |
⊢ ( 1o evalSub 𝑠 ) |
25 |
3
|
cv |
⊢ 𝑟 |
26 |
25 24
|
cfv |
⊢ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) |
27 |
22 26
|
ccom |
⊢ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
28 |
8 6 27
|
csb |
⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
29 |
1 3 2 7 28
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
30 |
0 29
|
wceq |
⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |