Database GRAPH THEORY Walks, paths and cycles Walks df-ewlks  
				
		 
		
			
		 
		Description:   Define the set of all s-walks of edges (in a hypergraph) corresponding
       to s-walks "on the edge level" discussed in Aksoy et al.  For an
       extended nonnegative integer s, an s-walk is a sequence of hyperedges,
       e(0), e(1), ... , e(k), where e(j-1) and e(j) have at least s vertices
       in common (for j=1, ... , k).  In contrast to the definition in Aksoy et
       al., s = 0  (a 0-walk is an arbitrary sequence of hyperedges) and
       s = +oo  (then the number of common vertices of two adjacent
       hyperedges must be infinite) are allowed.  Furthermore, it is not
       forbidden that adjacent hyperedges are equal.  (Contributed by AV , 4-Jan-2021) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-ewlks ⊢    EdgWalks   =  ( 𝑔   ∈  V ,  𝑠   ∈  ℕ0 *   ↦  { 𝑓   ∣  [  ( iEdg ‘ 𝑔  )  /  𝑖  ]  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) ) } )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cewlks ⊢   EdgWalks   
						
							1 
								
							 
							vg ⊢  𝑔   
						
							2 
								
							 
							cvv ⊢  V  
						
							3 
								
							 
							vs ⊢  𝑠   
						
							4 
								
							 
							cxnn0 ⊢  ℕ0 *   
						
							5 
								
							 
							vf ⊢  𝑓   
						
							6 
								
							 
							ciedg ⊢  iEdg  
						
							7 
								1 
							 
							cv ⊢  𝑔   
						
							8 
								7  6 
							 
							cfv ⊢  ( iEdg ‘ 𝑔  )  
						
							9 
								
							 
							vi ⊢  𝑖   
						
							10 
								5 
							 
							cv ⊢  𝑓   
						
							11 
								9 
							 
							cv ⊢  𝑖   
						
							12 
								11 
							 
							cdm ⊢  dom  𝑖   
						
							13 
								12 
							 
							cword ⊢  Word  dom  𝑖   
						
							14 
								10  13 
							 
							wcel ⊢  𝑓   ∈  Word  dom  𝑖   
						
							15 
								
							 
							vk ⊢  𝑘   
						
							16 
								
							 
							c1 ⊢  1  
						
							17 
								
							 
							cfzo ⊢  ..^  
						
							18 
								
							 
							chash ⊢  ♯  
						
							19 
								10  18 
							 
							cfv ⊢  ( ♯ ‘ 𝑓  )  
						
							20 
								16  19  17 
							 
							co ⊢  ( 1 ..^ ( ♯ ‘ 𝑓  ) )  
						
							21 
								3 
							 
							cv ⊢  𝑠   
						
							22 
								
							 
							cle ⊢   ≤   
						
							23 
								15 
							 
							cv ⊢  𝑘   
						
							24 
								
							 
							cmin ⊢   −   
						
							25 
								23  16  24 
							 
							co ⊢  ( 𝑘   −  1 )  
						
							26 
								25  10 
							 
							cfv ⊢  ( 𝑓  ‘ ( 𝑘   −  1 ) )  
						
							27 
								26  11 
							 
							cfv ⊢  ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  
						
							28 
								23  10 
							 
							cfv ⊢  ( 𝑓  ‘ 𝑘  )  
						
							29 
								28  11 
							 
							cfv ⊢  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) )  
						
							30 
								27  29 
							 
							cin ⊢  ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) )  
						
							31 
								30  18 
							 
							cfv ⊢  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) )  
						
							32 
								21  31  22 
							 
							wbr ⊢  𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) )  
						
							33 
								32  15  20 
							 
							wral ⊢  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) )  
						
							34 
								14  33 
							 
							wa ⊢  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) )  
						
							35 
								34  9  8 
							 
							wsbc ⊢  [  ( iEdg ‘ 𝑔  )  /  𝑖  ]  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) )  
						
							36 
								35  5 
							 
							cab ⊢  { 𝑓   ∣  [  ( iEdg ‘ 𝑔  )  /  𝑖  ]  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) ) }  
						
							37 
								1  3  2  4  36 
							 
							cmpo ⊢  ( 𝑔   ∈  V ,  𝑠   ∈  ℕ0 *   ↦  { 𝑓   ∣  [  ( iEdg ‘ 𝑔  )  /  𝑖  ]  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) ) } )  
						
							38 
								0  37 
							 
							wceq ⊢   EdgWalks   =  ( 𝑔   ∈  V ,  𝑠   ∈  ℕ0 *   ↦  { 𝑓   ∣  [  ( iEdg ‘ 𝑔  )  /  𝑖  ]  ( 𝑓   ∈  Word  dom  𝑖   ∧  ∀ 𝑘   ∈  ( 1 ..^ ( ♯ ‘ 𝑓  ) ) 𝑠   ≤  ( ♯ ‘ ( ( 𝑖  ‘ ( 𝑓  ‘ ( 𝑘   −  1 ) ) )  ∩  ( 𝑖  ‘ ( 𝑓  ‘ 𝑘  ) ) ) ) ) } )