Metamath Proof Explorer


Definition df-exid

Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion df-exid ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexid ExId
1 vg 𝑔
2 vx 𝑥
3 1 cv 𝑔
4 3 cdm dom 𝑔
5 4 cdm dom dom 𝑔
6 vy 𝑦
7 2 cv 𝑥
8 6 cv 𝑦
9 7 8 3 co ( 𝑥 𝑔 𝑦 )
10 9 8 wceq ( 𝑥 𝑔 𝑦 ) = 𝑦
11 8 7 3 co ( 𝑦 𝑔 𝑥 )
12 11 8 wceq ( 𝑦 𝑔 𝑥 ) = 𝑦
13 10 12 wa ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 )
14 13 6 5 wral 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 )
15 14 2 5 wrex 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 )
16 15 1 cab { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) }
17 0 16 wceq ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) }