| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cexid |
⊢ ExId |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
vx |
⊢ 𝑥 |
| 3 |
1
|
cv |
⊢ 𝑔 |
| 4 |
3
|
cdm |
⊢ dom 𝑔 |
| 5 |
4
|
cdm |
⊢ dom dom 𝑔 |
| 6 |
|
vy |
⊢ 𝑦 |
| 7 |
2
|
cv |
⊢ 𝑥 |
| 8 |
6
|
cv |
⊢ 𝑦 |
| 9 |
7 8 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
| 10 |
9 8
|
wceq |
⊢ ( 𝑥 𝑔 𝑦 ) = 𝑦 |
| 11 |
8 7 3
|
co |
⊢ ( 𝑦 𝑔 𝑥 ) |
| 12 |
11 8
|
wceq |
⊢ ( 𝑦 𝑔 𝑥 ) = 𝑦 |
| 13 |
10 12
|
wa |
⊢ ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 14 |
13 6 5
|
wral |
⊢ ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 15 |
14 2 5
|
wrex |
⊢ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 16 |
15 1
|
cab |
⊢ { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |
| 17 |
0 16
|
wceq |
⊢ ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |