Metamath Proof Explorer


Definition df-exp

Description: Define exponentiation to nonnegative integer powers. For example, ( 5 ^ 2 ) = 2 5 ( ex-exp ). Terminology: In general, "exponentiation" is the operation of raising a "base" x to the power of the "exponent" y , resulting in the "power" ( x ^ y ) , also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" x to the power of an integer y , resulting in the "integer power" ( x ^ y ) .

This definition is not meant to be used directly; instead, exp0 and expp1 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (_Science_ 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0 ^ 0 = 1 per the convention of Definition 10-4.1 of Gleason p. 134 ( 0exp0e1 ).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, ( -u 3 ^ -u 2 ) = ( 1 / 9 ) ( ex-exp ). The case x = 0 , y < 0 gives the value ( 1 / 0 ) , so we will avoid this case in our theorems.

For a definition of exponentiation including complex exponents see df-cxp (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz . (Contributed by Raph Levien, 20-May-2004) (Revised by NM, 15-Oct-2004)

Ref Expression
Assertion df-exp ↑ = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℤ ↦ if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexp
1 vx 𝑥
2 cc
3 vy 𝑦
4 cz
5 3 cv 𝑦
6 cc0 0
7 5 6 wceq 𝑦 = 0
8 c1 1
9 clt <
10 6 5 9 wbr 0 < 𝑦
11 cmul ·
12 cn
13 1 cv 𝑥
14 13 csn { 𝑥 }
15 12 14 cxp ( ℕ × { 𝑥 } )
16 11 15 8 cseq seq 1 ( · , ( ℕ × { 𝑥 } ) )
17 5 16 cfv ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 )
18 cdiv /
19 5 cneg - 𝑦
20 19 16 cfv ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 )
21 8 20 18 co ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) )
22 10 17 21 cif if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) )
23 7 8 22 cif if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) )
24 1 3 2 4 23 cmpo ( 𝑥 ∈ ℂ , 𝑦 ∈ ℤ ↦ if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) )
25 0 24 wceq ↑ = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℤ ↦ if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) )