| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfbas |
⊢ fBas |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑤 |
| 5 |
4
|
cpw |
⊢ 𝒫 𝑤 |
| 6 |
5
|
cpw |
⊢ 𝒫 𝒫 𝑤 |
| 7 |
3
|
cv |
⊢ 𝑥 |
| 8 |
|
c0 |
⊢ ∅ |
| 9 |
7 8
|
wne |
⊢ 𝑥 ≠ ∅ |
| 10 |
8 7
|
wnel |
⊢ ∅ ∉ 𝑥 |
| 11 |
|
vy |
⊢ 𝑦 |
| 12 |
|
vz |
⊢ 𝑧 |
| 13 |
11
|
cv |
⊢ 𝑦 |
| 14 |
12
|
cv |
⊢ 𝑧 |
| 15 |
13 14
|
cin |
⊢ ( 𝑦 ∩ 𝑧 ) |
| 16 |
15
|
cpw |
⊢ 𝒫 ( 𝑦 ∩ 𝑧 ) |
| 17 |
7 16
|
cin |
⊢ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 18 |
17 8
|
wne |
⊢ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 19 |
18 12 7
|
wral |
⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 20 |
19 11 7
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 21 |
9 10 20
|
w3a |
⊢ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) |
| 22 |
21 3 6
|
crab |
⊢ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } |
| 23 |
1 2 22
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } ) |
| 24 |
0 23
|
wceq |
⊢ fBas = ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } ) |