| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfcf | ⊢  fClusf | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vf | ⊢ 𝑓 | 
						
							| 4 |  | cfil | ⊢ Fil | 
						
							| 5 | 4 | crn | ⊢ ran  Fil | 
						
							| 6 | 5 | cuni | ⊢ ∪  ran  Fil | 
						
							| 7 |  | vg | ⊢ 𝑔 | 
						
							| 8 | 1 | cv | ⊢ 𝑗 | 
						
							| 9 | 8 | cuni | ⊢ ∪  𝑗 | 
						
							| 10 |  | cmap | ⊢  ↑m | 
						
							| 11 | 3 | cv | ⊢ 𝑓 | 
						
							| 12 | 11 | cuni | ⊢ ∪  𝑓 | 
						
							| 13 | 9 12 10 | co | ⊢ ( ∪  𝑗  ↑m  ∪  𝑓 ) | 
						
							| 14 |  | cfcls | ⊢  fClus | 
						
							| 15 |  | cfm | ⊢  FilMap | 
						
							| 16 | 7 | cv | ⊢ 𝑔 | 
						
							| 17 | 9 16 15 | co | ⊢ ( ∪  𝑗  FilMap  𝑔 ) | 
						
							| 18 | 11 17 | cfv | ⊢ ( ( ∪  𝑗  FilMap  𝑔 ) ‘ 𝑓 ) | 
						
							| 19 | 8 18 14 | co | ⊢ ( 𝑗  fClus  ( ( ∪  𝑗  FilMap  𝑔 ) ‘ 𝑓 ) ) | 
						
							| 20 | 7 13 19 | cmpt | ⊢ ( 𝑔  ∈  ( ∪  𝑗  ↑m  ∪  𝑓 )  ↦  ( 𝑗  fClus  ( ( ∪  𝑗  FilMap  𝑔 ) ‘ 𝑓 ) ) ) | 
						
							| 21 | 1 3 2 6 20 | cmpo | ⊢ ( 𝑗  ∈  Top ,  𝑓  ∈  ∪  ran  Fil  ↦  ( 𝑔  ∈  ( ∪  𝑗  ↑m  ∪  𝑓 )  ↦  ( 𝑗  fClus  ( ( ∪  𝑗  FilMap  𝑔 ) ‘ 𝑓 ) ) ) ) | 
						
							| 22 | 0 21 | wceq | ⊢  fClusf   =  ( 𝑗  ∈  Top ,  𝑓  ∈  ∪  ran  Fil  ↦  ( 𝑔  ∈  ( ∪  𝑗  ↑m  ∪  𝑓 )  ↦  ( 𝑗  fClus  ( ( ∪  𝑗  FilMap  𝑔 ) ‘ 𝑓 ) ) ) ) |