Metamath Proof Explorer


Definition df-fcf

Description: Define a function that gives the cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009)

Ref Expression
Assertion df-fcf fClusf = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ ( 𝑔 ∈ ( 𝑗m 𝑓 ) ↦ ( 𝑗 fClus ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfcf fClusf
1 vj 𝑗
2 ctop Top
3 vf 𝑓
4 cfil Fil
5 4 crn ran Fil
6 5 cuni ran Fil
7 vg 𝑔
8 1 cv 𝑗
9 8 cuni 𝑗
10 cmap m
11 3 cv 𝑓
12 11 cuni 𝑓
13 9 12 10 co ( 𝑗m 𝑓 )
14 cfcls fClus
15 cfm FilMap
16 7 cv 𝑔
17 9 16 15 co ( 𝑗 FilMap 𝑔 )
18 11 17 cfv ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 )
19 8 18 14 co ( 𝑗 fClus ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) )
20 7 13 19 cmpt ( 𝑔 ∈ ( 𝑗m 𝑓 ) ↦ ( 𝑗 fClus ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) )
21 1 3 2 6 20 cmpo ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ ( 𝑔 ∈ ( 𝑗m 𝑓 ) ↦ ( 𝑗 fClus ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) )
22 0 21 wceq fClusf = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ ( 𝑔 ∈ ( 𝑗m 𝑓 ) ↦ ( 𝑗 fClus ( ( 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) )