| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfcls | ⊢  fClus | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vf | ⊢ 𝑓 | 
						
							| 4 |  | cfil | ⊢ Fil | 
						
							| 5 | 4 | crn | ⊢ ran  Fil | 
						
							| 6 | 5 | cuni | ⊢ ∪  ran  Fil | 
						
							| 7 | 1 | cv | ⊢ 𝑗 | 
						
							| 8 | 7 | cuni | ⊢ ∪  𝑗 | 
						
							| 9 | 3 | cv | ⊢ 𝑓 | 
						
							| 10 | 9 | cuni | ⊢ ∪  𝑓 | 
						
							| 11 | 8 10 | wceq | ⊢ ∪  𝑗  =  ∪  𝑓 | 
						
							| 12 |  | vx | ⊢ 𝑥 | 
						
							| 13 |  | ccl | ⊢ cls | 
						
							| 14 | 7 13 | cfv | ⊢ ( cls ‘ 𝑗 ) | 
						
							| 15 | 12 | cv | ⊢ 𝑥 | 
						
							| 16 | 15 14 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) | 
						
							| 17 | 12 9 16 | ciin | ⊢ ∩  𝑥  ∈  𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) | 
						
							| 18 |  | c0 | ⊢ ∅ | 
						
							| 19 | 11 17 18 | cif | ⊢ if ( ∪  𝑗  =  ∪  𝑓 ,  ∩  𝑥  ∈  𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) ,  ∅ ) | 
						
							| 20 | 1 3 2 6 19 | cmpo | ⊢ ( 𝑗  ∈  Top ,  𝑓  ∈  ∪  ran  Fil  ↦  if ( ∪  𝑗  =  ∪  𝑓 ,  ∩  𝑥  ∈  𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 21 | 0 20 | wceq | ⊢  fClus   =  ( 𝑗  ∈  Top ,  𝑓  ∈  ∪  ran  Fil  ↦  if ( ∪  𝑗  =  ∪  𝑓 ,  ∩  𝑥  ∈  𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) ,  ∅ ) ) |