Description: Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fg | ⊢ filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfg | ⊢ filGen | |
1 | vw | ⊢ 𝑤 | |
2 | cvv | ⊢ V | |
3 | vx | ⊢ 𝑥 | |
4 | cfbas | ⊢ fBas | |
5 | 1 | cv | ⊢ 𝑤 |
6 | 5 4 | cfv | ⊢ ( fBas ‘ 𝑤 ) |
7 | vy | ⊢ 𝑦 | |
8 | 5 | cpw | ⊢ 𝒫 𝑤 |
9 | 3 | cv | ⊢ 𝑥 |
10 | 7 | cv | ⊢ 𝑦 |
11 | 10 | cpw | ⊢ 𝒫 𝑦 |
12 | 9 11 | cin | ⊢ ( 𝑥 ∩ 𝒫 𝑦 ) |
13 | c0 | ⊢ ∅ | |
14 | 12 13 | wne | ⊢ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ |
15 | 14 7 8 | crab | ⊢ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } |
16 | 1 3 2 6 15 | cmpo | ⊢ ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } ) |
17 | 0 16 | wceq | ⊢ filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } ) |