Metamath Proof Explorer


Definition df-fg

Description: Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)

Ref Expression
Assertion df-fg filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfg filGen
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 cfbas fBas
5 1 cv 𝑤
6 5 4 cfv ( fBas ‘ 𝑤 )
7 vy 𝑦
8 5 cpw 𝒫 𝑤
9 3 cv 𝑥
10 7 cv 𝑦
11 10 cpw 𝒫 𝑦
12 9 11 cin ( 𝑥 ∩ 𝒫 𝑦 )
13 c0
14 12 13 wne ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅
15 14 7 8 crab { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ }
16 1 3 2 6 15 cmpo ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } )
17 0 16 wceq filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } )