Metamath Proof Explorer


Definition df-fin2

Description: A set is II-finite (Tarski finite) iff every nonempty chain of subsets contains a maximum element. Definition II of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin2 FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin2 FinII
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 3 cpw 𝒫 𝑥
5 4 cpw 𝒫 𝒫 𝑥
6 2 cv 𝑦
7 c0
8 6 7 wne 𝑦 ≠ ∅
9 crpss []
10 6 9 wor [] Or 𝑦
11 8 10 wa ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 )
12 6 cuni 𝑦
13 12 6 wcel 𝑦𝑦
14 11 13 wi ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 )
15 14 2 5 wral 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 )
16 15 1 cab { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) }
17 0 16 wceq FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) }