Metamath Proof Explorer


Definition df-fin3

Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin3 FinIII = { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin3 FinIII
1 vx 𝑥
2 1 cv 𝑥
3 2 cpw 𝒫 𝑥
4 cfin4 FinIV
5 3 4 wcel 𝒫 𝑥 ∈ FinIV
6 5 1 cab { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV }
7 0 6 wceq FinIII = { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV }