Metamath Proof Explorer


Definition df-fin5

Description: A set is V-finite iff it behaves finitely under |_| . Definition V of Levy58 p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin5 FinV = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin5 FinV
1 vx 𝑥
2 1 cv 𝑥
3 c0
4 2 3 wceq 𝑥 = ∅
5 csdm
6 2 2 cdju ( 𝑥𝑥 )
7 2 6 5 wbr 𝑥 ≺ ( 𝑥𝑥 )
8 4 7 wo ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥𝑥 ) )
9 8 1 cab { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥𝑥 ) ) }
10 0 9 wceq FinV = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥𝑥 ) ) }