Metamath Proof Explorer


Definition df-fin6

Description: A set is VI-finite iff it behaves finitely under X. . Definition VI of Levy58 p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin6 FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o𝑥 ≺ ( 𝑥 × 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin6 FinVI
1 vx 𝑥
2 1 cv 𝑥
3 csdm
4 c2o 2o
5 2 4 3 wbr 𝑥 ≺ 2o
6 2 2 cxp ( 𝑥 × 𝑥 )
7 2 6 3 wbr 𝑥 ≺ ( 𝑥 × 𝑥 )
8 5 7 wo ( 𝑥 ≺ 2o𝑥 ≺ ( 𝑥 × 𝑥 ) )
9 8 1 cab { 𝑥 ∣ ( 𝑥 ≺ 2o𝑥 ≺ ( 𝑥 × 𝑥 ) ) }
10 0 9 wceq FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o𝑥 ≺ ( 𝑥 × 𝑥 ) ) }