Metamath Proof Explorer
Description: A set is VI-finite iff it behaves finitely under X. . Definition VI
of Levy58 p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014)
|
|
Ref |
Expression |
|
Assertion |
df-fin6 |
⊢ FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfin6 |
⊢ FinVI |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
1
|
cv |
⊢ 𝑥 |
| 3 |
|
csdm |
⊢ ≺ |
| 4 |
|
c2o |
⊢ 2o |
| 5 |
2 4 3
|
wbr |
⊢ 𝑥 ≺ 2o |
| 6 |
2 2
|
cxp |
⊢ ( 𝑥 × 𝑥 ) |
| 7 |
2 6 3
|
wbr |
⊢ 𝑥 ≺ ( 𝑥 × 𝑥 ) |
| 8 |
5 7
|
wo |
⊢ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) |
| 9 |
8 1
|
cab |
⊢ { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } |
| 10 |
0 9
|
wceq |
⊢ FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } |