Metamath Proof Explorer


Definition df-fldgen

Description: Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg ). If the base structure is a field, this is a subfield (see fldgenfld and fldsdrgfld ). In general this will be used in the context of fields, hence the name fldGen . (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025)

Ref Expression
Assertion df-fldgen fldGen = ( 𝑓 ∈ V , 𝑠 ∈ V ↦ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfldgen fldGen
1 vf 𝑓
2 cvv V
3 vs 𝑠
4 va 𝑎
5 csdrg SubDRing
6 1 cv 𝑓
7 6 5 cfv ( SubDRing ‘ 𝑓 )
8 3 cv 𝑠
9 4 cv 𝑎
10 8 9 wss 𝑠𝑎
11 10 4 7 crab { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 }
12 11 cint { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 }
13 1 3 2 2 12 cmpo ( 𝑓 ∈ V , 𝑠 ∈ V ↦ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } )
14 0 13 wceq fldGen = ( 𝑓 ∈ V , 𝑠 ∈ V ↦ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } )