Metamath Proof Explorer


Definition df-flim

Description: Define a function (indexed by a topology j ) whose value is the limits of a filter f . (Contributed by Jeff Hankins, 4-Sep-2009)

Ref Expression
Assertion df-flim fLim = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ { 𝑥 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cflim fLim
1 vj 𝑗
2 ctop Top
3 vf 𝑓
4 cfil Fil
5 4 crn ran Fil
6 5 cuni ran Fil
7 vx 𝑥
8 1 cv 𝑗
9 8 cuni 𝑗
10 cnei nei
11 8 10 cfv ( nei ‘ 𝑗 )
12 7 cv 𝑥
13 12 csn { 𝑥 }
14 13 11 cfv ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } )
15 3 cv 𝑓
16 14 15 wss ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓
17 9 cpw 𝒫 𝑗
18 15 17 wss 𝑓 ⊆ 𝒫 𝑗
19 16 18 wa ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 )
20 19 7 9 crab { 𝑥 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 ) }
21 1 3 2 6 20 cmpo ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ { 𝑥 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 ) } )
22 0 21 wceq fLim = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ { 𝑥 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 ) } )