Step |
Hyp |
Ref |
Expression |
0 |
|
cflim |
⊢ fLim |
1 |
|
vj |
⊢ 𝑗 |
2 |
|
ctop |
⊢ Top |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cfil |
⊢ Fil |
5 |
4
|
crn |
⊢ ran Fil |
6 |
5
|
cuni |
⊢ ∪ ran Fil |
7 |
|
vx |
⊢ 𝑥 |
8 |
1
|
cv |
⊢ 𝑗 |
9 |
8
|
cuni |
⊢ ∪ 𝑗 |
10 |
|
cnei |
⊢ nei |
11 |
8 10
|
cfv |
⊢ ( nei ‘ 𝑗 ) |
12 |
7
|
cv |
⊢ 𝑥 |
13 |
12
|
csn |
⊢ { 𝑥 } |
14 |
13 11
|
cfv |
⊢ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) |
15 |
3
|
cv |
⊢ 𝑓 |
16 |
14 15
|
wss |
⊢ ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 |
17 |
9
|
cpw |
⊢ 𝒫 ∪ 𝑗 |
18 |
15 17
|
wss |
⊢ 𝑓 ⊆ 𝒫 ∪ 𝑗 |
19 |
16 18
|
wa |
⊢ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) |
20 |
19 7 9
|
crab |
⊢ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } |
21 |
1 3 2 6 20
|
cmpo |
⊢ ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |
22 |
0 21
|
wceq |
⊢ fLim = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ { 𝑥 ∈ ∪ 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗 ) } ) |