Metamath Proof Explorer


Definition df-fr

Description: Define the well-founded relation predicate. Definition 6.24(1) of TakeutiZaring p. 30. For alternate definitions, see dffr2 and dffr3 . A class is called well-founded when the membership relation _E (see df-eprel ) is well-founded on it, that is, A is well-founded if _E Fr A (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 wfr 𝑅 Fr 𝐴
3 vx 𝑥
4 3 cv 𝑥
5 4 1 wss 𝑥𝐴
6 c0
7 4 6 wne 𝑥 ≠ ∅
8 5 7 wa ( 𝑥𝐴𝑥 ≠ ∅ )
9 vy 𝑦
10 vz 𝑧
11 10 cv 𝑧
12 9 cv 𝑦
13 11 12 0 wbr 𝑧 𝑅 𝑦
14 13 wn ¬ 𝑧 𝑅 𝑦
15 14 10 4 wral 𝑧𝑥 ¬ 𝑧 𝑅 𝑦
16 15 9 4 wrex 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦
17 8 16 wi ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
18 17 3 wal 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 )
19 2 18 wb ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )