Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-frac | ⊢ Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfrac | ⊢ Frac | |
1 | vr | ⊢ 𝑟 | |
2 | cvv | ⊢ V | |
3 | 1 | cv | ⊢ 𝑟 |
4 | crloc | ⊢ RLocal | |
5 | crlreg | ⊢ RLReg | |
6 | 3 5 | cfv | ⊢ ( RLReg ‘ 𝑟 ) |
7 | 3 6 4 | co | ⊢ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) |
8 | 1 2 7 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) |
9 | 0 8 | wceq | ⊢ Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) |