Metamath Proof Explorer


Definition df-frac

Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025)

Ref Expression
Assertion df-frac Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrac Frac
1 vr 𝑟
2 cvv V
3 1 cv 𝑟
4 crloc RLocal
5 crlreg RLReg
6 3 5 cfv ( RLReg ‘ 𝑟 )
7 3 6 4 co ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) )
8 1 2 7 cmpt ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) )
9 0 8 wceq Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) )