Step |
Hyp |
Ref |
Expression |
0 |
|
cfrgr |
⊢ FriendGraph |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cusgr |
⊢ USGraph |
3 |
|
cvtx |
⊢ Vtx |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
6 |
|
vv |
⊢ 𝑣 |
7 |
|
cedg |
⊢ Edg |
8 |
4 7
|
cfv |
⊢ ( Edg ‘ 𝑔 ) |
9 |
|
ve |
⊢ 𝑒 |
10 |
|
vk |
⊢ 𝑘 |
11 |
6
|
cv |
⊢ 𝑣 |
12 |
|
vl |
⊢ 𝑙 |
13 |
10
|
cv |
⊢ 𝑘 |
14 |
13
|
csn |
⊢ { 𝑘 } |
15 |
11 14
|
cdif |
⊢ ( 𝑣 ∖ { 𝑘 } ) |
16 |
|
vx |
⊢ 𝑥 |
17 |
16
|
cv |
⊢ 𝑥 |
18 |
17 13
|
cpr |
⊢ { 𝑥 , 𝑘 } |
19 |
12
|
cv |
⊢ 𝑙 |
20 |
17 19
|
cpr |
⊢ { 𝑥 , 𝑙 } |
21 |
18 20
|
cpr |
⊢ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } |
22 |
9
|
cv |
⊢ 𝑒 |
23 |
21 22
|
wss |
⊢ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
24 |
23 16 11
|
wreu |
⊢ ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
25 |
24 12 15
|
wral |
⊢ ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
26 |
25 10 11
|
wral |
⊢ ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
27 |
26 9 8
|
wsbc |
⊢ [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
28 |
27 6 5
|
wsbc |
⊢ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
29 |
28 1 2
|
crab |
⊢ { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 } |
30 |
0 29
|
wceq |
⊢ FriendGraph = { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 } |