| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfrgr |
⊢ FriendGraph |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cusgr |
⊢ USGraph |
| 3 |
|
cvtx |
⊢ Vtx |
| 4 |
1
|
cv |
⊢ 𝑔 |
| 5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 6 |
|
vv |
⊢ 𝑣 |
| 7 |
|
cedg |
⊢ Edg |
| 8 |
4 7
|
cfv |
⊢ ( Edg ‘ 𝑔 ) |
| 9 |
|
ve |
⊢ 𝑒 |
| 10 |
|
vk |
⊢ 𝑘 |
| 11 |
6
|
cv |
⊢ 𝑣 |
| 12 |
|
vl |
⊢ 𝑙 |
| 13 |
10
|
cv |
⊢ 𝑘 |
| 14 |
13
|
csn |
⊢ { 𝑘 } |
| 15 |
11 14
|
cdif |
⊢ ( 𝑣 ∖ { 𝑘 } ) |
| 16 |
|
vx |
⊢ 𝑥 |
| 17 |
16
|
cv |
⊢ 𝑥 |
| 18 |
17 13
|
cpr |
⊢ { 𝑥 , 𝑘 } |
| 19 |
12
|
cv |
⊢ 𝑙 |
| 20 |
17 19
|
cpr |
⊢ { 𝑥 , 𝑙 } |
| 21 |
18 20
|
cpr |
⊢ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } |
| 22 |
9
|
cv |
⊢ 𝑒 |
| 23 |
21 22
|
wss |
⊢ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 24 |
23 16 11
|
wreu |
⊢ ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 25 |
24 12 15
|
wral |
⊢ ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 26 |
25 10 11
|
wral |
⊢ ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 27 |
26 9 8
|
wsbc |
⊢ [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 28 |
27 6 5
|
wsbc |
⊢ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 |
| 29 |
28 1 2
|
crab |
⊢ { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 } |
| 30 |
0 29
|
wceq |
⊢ FriendGraph = { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 } |