Metamath Proof Explorer


Definition df-frgr

Description: Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called thefriendship condition , see definition in MertziosUnger p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017) (Revised by AV, 29-Mar-2021) (Revised by AV, 3-Jan-2024)

Ref Expression
Assertion df-frgr FriendGraph = { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ]𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrgr FriendGraph
1 vg 𝑔
2 cusgr USGraph
3 cvtx Vtx
4 1 cv 𝑔
5 4 3 cfv ( Vtx ‘ 𝑔 )
6 vv 𝑣
7 cedg Edg
8 4 7 cfv ( Edg ‘ 𝑔 )
9 ve 𝑒
10 vk 𝑘
11 6 cv 𝑣
12 vl 𝑙
13 10 cv 𝑘
14 13 csn { 𝑘 }
15 11 14 cdif ( 𝑣 ∖ { 𝑘 } )
16 vx 𝑥
17 16 cv 𝑥
18 17 13 cpr { 𝑥 , 𝑘 }
19 12 cv 𝑙
20 17 19 cpr { 𝑥 , 𝑙 }
21 18 20 cpr { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } }
22 9 cv 𝑒
23 21 22 wss { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
24 23 16 11 wreu ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
25 24 12 15 wral 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
26 25 10 11 wral 𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
27 26 9 8 wsbc [ ( Edg ‘ 𝑔 ) / 𝑒 ]𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
28 27 6 5 wsbc [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ]𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒
29 28 1 2 crab { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ]𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 }
30 0 29 wceq FriendGraph = { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ]𝑘𝑣𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 }