Metamath Proof Explorer


Definition df-frlm

Description: Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion df-frlm freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrlm freeLMod
1 vr 𝑟
2 cvv V
3 vi 𝑖
4 1 cv 𝑟
5 cdsmm m
6 3 cv 𝑖
7 crglmod ringLMod
8 4 7 cfv ( ringLMod ‘ 𝑟 )
9 8 csn { ( ringLMod ‘ 𝑟 ) }
10 6 9 cxp ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } )
11 4 10 5 co ( 𝑟m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) )
12 1 3 2 2 11 cmpo ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) )
13 0 12 wceq freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) )