Description: Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-frlm | ⊢ freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfrlm | ⊢ freeLMod | |
1 | vr | ⊢ 𝑟 | |
2 | cvv | ⊢ V | |
3 | vi | ⊢ 𝑖 | |
4 | 1 | cv | ⊢ 𝑟 |
5 | cdsmm | ⊢ ⊕m | |
6 | 3 | cv | ⊢ 𝑖 |
7 | crglmod | ⊢ ringLMod | |
8 | 4 7 | cfv | ⊢ ( ringLMod ‘ 𝑟 ) |
9 | 8 | csn | ⊢ { ( ringLMod ‘ 𝑟 ) } |
10 | 6 9 | cxp | ⊢ ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) |
11 | 4 10 5 | co | ⊢ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) |
12 | 1 3 2 2 11 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) ) |
13 | 0 12 | wceq | ⊢ freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) ) |