Metamath Proof Explorer


Definition df-fuc

Description: Definition of the category of functors between two fixed categories, with the objects being functors and the morphisms being natural transformations. Definition 6.15 in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-fuc FuncCat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { ⟨ ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfuc FuncCat
1 vt 𝑡
2 ccat Cat
3 vu 𝑢
4 cbs Base
5 cnx ndx
6 5 4 cfv ( Base ‘ ndx )
7 1 cv 𝑡
8 cfunc Func
9 3 cv 𝑢
10 7 9 8 co ( 𝑡 Func 𝑢 )
11 6 10 cop ⟨ ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) ⟩
12 chom Hom
13 5 12 cfv ( Hom ‘ ndx )
14 cnat Nat
15 7 9 14 co ( 𝑡 Nat 𝑢 )
16 13 15 cop ⟨ ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) ⟩
17 cco comp
18 5 17 cfv ( comp ‘ ndx )
19 vv 𝑣
20 10 10 cxp ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) )
21 vh
22 c1st 1st
23 19 cv 𝑣
24 23 22 cfv ( 1st𝑣 )
25 vf 𝑓
26 c2nd 2nd
27 23 26 cfv ( 2nd𝑣 )
28 vg 𝑔
29 vb 𝑏
30 28 cv 𝑔
31 21 cv
32 30 31 15 co ( 𝑔 ( 𝑡 Nat 𝑢 ) )
33 va 𝑎
34 25 cv 𝑓
35 34 30 15 co ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 )
36 vx 𝑥
37 7 4 cfv ( Base ‘ 𝑡 )
38 29 cv 𝑏
39 36 cv 𝑥
40 39 38 cfv ( 𝑏𝑥 )
41 34 22 cfv ( 1st𝑓 )
42 39 41 cfv ( ( 1st𝑓 ) ‘ 𝑥 )
43 30 22 cfv ( 1st𝑔 )
44 39 43 cfv ( ( 1st𝑔 ) ‘ 𝑥 )
45 42 44 cop ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩
46 9 17 cfv ( comp ‘ 𝑢 )
47 31 22 cfv ( 1st )
48 39 47 cfv ( ( 1st ) ‘ 𝑥 )
49 45 48 46 co ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) )
50 33 cv 𝑎
51 39 50 cfv ( 𝑎𝑥 )
52 40 51 49 co ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) )
53 36 37 52 cmpt ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) )
54 29 33 32 35 53 cmpo ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
55 28 27 54 csb ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
56 25 24 55 csb ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
57 19 21 20 10 56 cmpo ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
58 18 57 cop ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩
59 11 16 58 ctp { ⟨ ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ }
60 1 3 2 2 59 cmpo ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { ⟨ ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )
61 0 60 wceq FuncCat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { ⟨ ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ∈ ( 𝑡 Func 𝑢 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝑢 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )