Step |
Hyp |
Ref |
Expression |
0 |
|
cfuc |
⊢ FuncCat |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
ccat |
⊢ Cat |
3 |
|
vu |
⊢ 𝑢 |
4 |
|
cbs |
⊢ Base |
5 |
|
cnx |
⊢ ndx |
6 |
5 4
|
cfv |
⊢ ( Base ‘ ndx ) |
7 |
1
|
cv |
⊢ 𝑡 |
8 |
|
cfunc |
⊢ Func |
9 |
3
|
cv |
⊢ 𝑢 |
10 |
7 9 8
|
co |
⊢ ( 𝑡 Func 𝑢 ) |
11 |
6 10
|
cop |
⊢ 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 |
12 |
|
chom |
⊢ Hom |
13 |
5 12
|
cfv |
⊢ ( Hom ‘ ndx ) |
14 |
|
cnat |
⊢ Nat |
15 |
7 9 14
|
co |
⊢ ( 𝑡 Nat 𝑢 ) |
16 |
13 15
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 |
17 |
|
cco |
⊢ comp |
18 |
5 17
|
cfv |
⊢ ( comp ‘ ndx ) |
19 |
|
vv |
⊢ 𝑣 |
20 |
10 10
|
cxp |
⊢ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) |
21 |
|
vh |
⊢ ℎ |
22 |
|
c1st |
⊢ 1st |
23 |
19
|
cv |
⊢ 𝑣 |
24 |
23 22
|
cfv |
⊢ ( 1st ‘ 𝑣 ) |
25 |
|
vf |
⊢ 𝑓 |
26 |
|
c2nd |
⊢ 2nd |
27 |
23 26
|
cfv |
⊢ ( 2nd ‘ 𝑣 ) |
28 |
|
vg |
⊢ 𝑔 |
29 |
|
vb |
⊢ 𝑏 |
30 |
28
|
cv |
⊢ 𝑔 |
31 |
21
|
cv |
⊢ ℎ |
32 |
30 31 15
|
co |
⊢ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) |
33 |
|
va |
⊢ 𝑎 |
34 |
25
|
cv |
⊢ 𝑓 |
35 |
34 30 15
|
co |
⊢ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) |
36 |
|
vx |
⊢ 𝑥 |
37 |
7 4
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
38 |
29
|
cv |
⊢ 𝑏 |
39 |
36
|
cv |
⊢ 𝑥 |
40 |
39 38
|
cfv |
⊢ ( 𝑏 ‘ 𝑥 ) |
41 |
34 22
|
cfv |
⊢ ( 1st ‘ 𝑓 ) |
42 |
39 41
|
cfv |
⊢ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) |
43 |
30 22
|
cfv |
⊢ ( 1st ‘ 𝑔 ) |
44 |
39 43
|
cfv |
⊢ ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) |
45 |
42 44
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 |
46 |
9 17
|
cfv |
⊢ ( comp ‘ 𝑢 ) |
47 |
31 22
|
cfv |
⊢ ( 1st ‘ ℎ ) |
48 |
39 47
|
cfv |
⊢ ( ( 1st ‘ ℎ ) ‘ 𝑥 ) |
49 |
45 48 46
|
co |
⊢ ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) |
50 |
33
|
cv |
⊢ 𝑎 |
51 |
39 50
|
cfv |
⊢ ( 𝑎 ‘ 𝑥 ) |
52 |
40 51 49
|
co |
⊢ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) |
53 |
36 37 52
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
54 |
29 33 32 35 53
|
cmpo |
⊢ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
55 |
28 27 54
|
csb |
⊢ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
56 |
25 24 55
|
csb |
⊢ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
57 |
19 21 20 10 56
|
cmpo |
⊢ ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) |
58 |
18 57
|
cop |
⊢ 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 |
59 |
11 16 58
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } |
60 |
1 3 2 2 59
|
cmpo |
⊢ ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
61 |
0 60
|
wceq |
⊢ FuncCat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 ( Base ‘ ndx ) , ( 𝑡 Func 𝑢 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑡 Nat 𝑢 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑡 Func 𝑢 ) × ( 𝑡 Func 𝑢 ) ) , ℎ ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝑡 Nat 𝑢 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝑡 Nat 𝑢 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑡 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |