Metamath Proof Explorer


Definition df-full

Description: Function returning all the full functors from a category C to a category D . A full functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are surjections. Definition 3.27(3) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion df-full Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cful Full
1 vc 𝑐
2 ccat Cat
3 vd 𝑑
4 vf 𝑓
5 vg 𝑔
6 4 cv 𝑓
7 1 cv 𝑐
8 cfunc Func
9 3 cv 𝑑
10 7 9 8 co ( 𝑐 Func 𝑑 )
11 5 cv 𝑔
12 6 11 10 wbr 𝑓 ( 𝑐 Func 𝑑 ) 𝑔
13 vx 𝑥
14 cbs Base
15 7 14 cfv ( Base ‘ 𝑐 )
16 vy 𝑦
17 13 cv 𝑥
18 16 cv 𝑦
19 17 18 11 co ( 𝑥 𝑔 𝑦 )
20 19 crn ran ( 𝑥 𝑔 𝑦 )
21 17 6 cfv ( 𝑓𝑥 )
22 chom Hom
23 9 22 cfv ( Hom ‘ 𝑑 )
24 18 6 cfv ( 𝑓𝑦 )
25 21 24 23 co ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) )
26 20 25 wceq ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) )
27 26 16 15 wral 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) )
28 27 13 15 wral 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) )
29 12 28 wa ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) ) )
30 29 4 5 copab { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) ) ) }
31 1 3 2 2 30 cmpo ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) ) ) } )
32 0 31 wceq Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓𝑦 ) ) ) } )