Step |
Hyp |
Ref |
Expression |
0 |
|
cful |
⊢ Full |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ccat |
⊢ Cat |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
vg |
⊢ 𝑔 |
6 |
4
|
cv |
⊢ 𝑓 |
7 |
1
|
cv |
⊢ 𝑐 |
8 |
|
cfunc |
⊢ Func |
9 |
3
|
cv |
⊢ 𝑑 |
10 |
7 9 8
|
co |
⊢ ( 𝑐 Func 𝑑 ) |
11 |
5
|
cv |
⊢ 𝑔 |
12 |
6 11 10
|
wbr |
⊢ 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 |
13 |
|
vx |
⊢ 𝑥 |
14 |
|
cbs |
⊢ Base |
15 |
7 14
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
16 |
|
vy |
⊢ 𝑦 |
17 |
13
|
cv |
⊢ 𝑥 |
18 |
16
|
cv |
⊢ 𝑦 |
19 |
17 18 11
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
20 |
19
|
crn |
⊢ ran ( 𝑥 𝑔 𝑦 ) |
21 |
17 6
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
22 |
|
chom |
⊢ Hom |
23 |
9 22
|
cfv |
⊢ ( Hom ‘ 𝑑 ) |
24 |
18 6
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
25 |
21 24 23
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
26 |
20 25
|
wceq |
⊢ ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
27 |
26 16 15
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
28 |
27 13 15
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) |
29 |
12 28
|
wa |
⊢ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) |
30 |
29 4 5
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
31 |
1 3 2 2 30
|
cmpo |
⊢ ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
32 |
0 31
|
wceq |
⊢ Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |