Step |
Hyp |
Ref |
Expression |
0 |
|
cga |
⊢ GrpAct |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cgrp |
⊢ Grp |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cvv |
⊢ V |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑔 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
8 |
|
vb |
⊢ 𝑏 |
9 |
|
vm |
⊢ 𝑚 |
10 |
3
|
cv |
⊢ 𝑠 |
11 |
|
cmap |
⊢ ↑m |
12 |
8
|
cv |
⊢ 𝑏 |
13 |
12 10
|
cxp |
⊢ ( 𝑏 × 𝑠 ) |
14 |
10 13 11
|
co |
⊢ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) |
15 |
|
vx |
⊢ 𝑥 |
16 |
|
c0g |
⊢ 0g |
17 |
6 16
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
18 |
9
|
cv |
⊢ 𝑚 |
19 |
15
|
cv |
⊢ 𝑥 |
20 |
17 19 18
|
co |
⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) |
21 |
20 19
|
wceq |
⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 |
22 |
|
vy |
⊢ 𝑦 |
23 |
|
vz |
⊢ 𝑧 |
24 |
22
|
cv |
⊢ 𝑦 |
25 |
|
cplusg |
⊢ +g |
26 |
6 25
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
27 |
23
|
cv |
⊢ 𝑧 |
28 |
24 27 26
|
co |
⊢ ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) |
29 |
28 19 18
|
co |
⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) |
30 |
27 19 18
|
co |
⊢ ( 𝑧 𝑚 𝑥 ) |
31 |
24 30 18
|
co |
⊢ ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
32 |
29 31
|
wceq |
⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
33 |
32 23 12
|
wral |
⊢ ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
34 |
33 22 12
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
35 |
21 34
|
wa |
⊢ ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) |
36 |
35 15 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) |
37 |
36 9 14
|
crab |
⊢ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } |
38 |
8 7 37
|
csb |
⊢ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } |
39 |
1 3 2 4 38
|
cmpo |
⊢ ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
40 |
0 39
|
wceq |
⊢ GrpAct = ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |