| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cga | ⊢  GrpAct | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cgrp | ⊢ Grp | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 |  | cbs | ⊢ Base | 
						
							| 6 | 1 | cv | ⊢ 𝑔 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 8 |  | vb | ⊢ 𝑏 | 
						
							| 9 |  | vm | ⊢ 𝑚 | 
						
							| 10 | 3 | cv | ⊢ 𝑠 | 
						
							| 11 |  | cmap | ⊢  ↑m | 
						
							| 12 | 8 | cv | ⊢ 𝑏 | 
						
							| 13 | 12 10 | cxp | ⊢ ( 𝑏  ×  𝑠 ) | 
						
							| 14 | 10 13 11 | co | ⊢ ( 𝑠  ↑m  ( 𝑏  ×  𝑠 ) ) | 
						
							| 15 |  | vx | ⊢ 𝑥 | 
						
							| 16 |  | c0g | ⊢ 0g | 
						
							| 17 | 6 16 | cfv | ⊢ ( 0g ‘ 𝑔 ) | 
						
							| 18 | 9 | cv | ⊢ 𝑚 | 
						
							| 19 | 15 | cv | ⊢ 𝑥 | 
						
							| 20 | 17 19 18 | co | ⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) | 
						
							| 21 | 20 19 | wceq | ⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥 | 
						
							| 22 |  | vy | ⊢ 𝑦 | 
						
							| 23 |  | vz | ⊢ 𝑧 | 
						
							| 24 | 22 | cv | ⊢ 𝑦 | 
						
							| 25 |  | cplusg | ⊢ +g | 
						
							| 26 | 6 25 | cfv | ⊢ ( +g ‘ 𝑔 ) | 
						
							| 27 | 23 | cv | ⊢ 𝑧 | 
						
							| 28 | 24 27 26 | co | ⊢ ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) | 
						
							| 29 | 28 19 18 | co | ⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) | 
						
							| 30 | 27 19 18 | co | ⊢ ( 𝑧 𝑚 𝑥 ) | 
						
							| 31 | 24 30 18 | co | ⊢ ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) | 
						
							| 32 | 29 31 | wceq | ⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) | 
						
							| 33 | 32 23 12 | wral | ⊢ ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) | 
						
							| 34 | 33 22 12 | wral | ⊢ ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) | 
						
							| 35 | 21 34 | wa | ⊢ ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) | 
						
							| 36 | 35 15 10 | wral | ⊢ ∀ 𝑥  ∈  𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) | 
						
							| 37 | 36 9 14 | crab | ⊢ { 𝑚  ∈  ( 𝑠  ↑m  ( 𝑏  ×  𝑠 ) )  ∣  ∀ 𝑥  ∈  𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } | 
						
							| 38 | 8 7 37 | csb | ⊢ ⦋ ( Base ‘ 𝑔 )  /  𝑏 ⦌ { 𝑚  ∈  ( 𝑠  ↑m  ( 𝑏  ×  𝑠 ) )  ∣  ∀ 𝑥  ∈  𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } | 
						
							| 39 | 1 3 2 4 38 | cmpo | ⊢ ( 𝑔  ∈  Grp ,  𝑠  ∈  V  ↦  ⦋ ( Base ‘ 𝑔 )  /  𝑏 ⦌ { 𝑚  ∈  ( 𝑠  ↑m  ( 𝑏  ×  𝑠 ) )  ∣  ∀ 𝑥  ∈  𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) | 
						
							| 40 | 0 39 | wceq | ⊢  GrpAct   =  ( 𝑔  ∈  Grp ,  𝑠  ∈  V  ↦  ⦋ ( Base ‘ 𝑔 )  /  𝑏 ⦌ { 𝑚  ∈  ( 𝑠  ↑m  ( 𝑏  ×  𝑠 ) )  ∣  ∀ 𝑥  ∈  𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 )  =  ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |