| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cgbo | 
							⊢  GoldbachOdd   | 
						
						
							| 1 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 2 | 
							
								
							 | 
							codd | 
							⊢  Odd   | 
						
						
							| 3 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 4 | 
							
								
							 | 
							cprime | 
							⊢ ℙ  | 
						
						
							| 5 | 
							
								
							 | 
							vq | 
							⊢ 𝑞  | 
						
						
							| 6 | 
							
								
							 | 
							vr | 
							⊢ 𝑟  | 
						
						
							| 7 | 
							
								3
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 8 | 
							
								7 2
							 | 
							wcel | 
							⊢ 𝑝  ∈   Odd   | 
						
						
							| 9 | 
							
								5
							 | 
							cv | 
							⊢ 𝑞  | 
						
						
							| 10 | 
							
								9 2
							 | 
							wcel | 
							⊢ 𝑞  ∈   Odd   | 
						
						
							| 11 | 
							
								6
							 | 
							cv | 
							⊢ 𝑟  | 
						
						
							| 12 | 
							
								11 2
							 | 
							wcel | 
							⊢ 𝑟  ∈   Odd   | 
						
						
							| 13 | 
							
								8 10 12
							 | 
							w3a | 
							⊢ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  | 
						
						
							| 14 | 
							
								1
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 15 | 
							
								
							 | 
							caddc | 
							⊢  +   | 
						
						
							| 16 | 
							
								7 9 15
							 | 
							co | 
							⊢ ( 𝑝  +  𝑞 )  | 
						
						
							| 17 | 
							
								16 11 15
							 | 
							co | 
							⊢ ( ( 𝑝  +  𝑞 )  +  𝑟 )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							wceq | 
							⊢ 𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							wa | 
							⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 20 | 
							
								19 6 4
							 | 
							wrex | 
							⊢ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 21 | 
							
								20 5 4
							 | 
							wrex | 
							⊢ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 22 | 
							
								21 3 4
							 | 
							wrex | 
							⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 23 | 
							
								22 1 2
							 | 
							crab | 
							⊢ { 𝑧  ∈   Odd   ∣  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) }  | 
						
						
							| 24 | 
							
								0 23
							 | 
							wceq | 
							⊢  GoldbachOdd   =  { 𝑧  ∈   Odd   ∣  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) }  |