Step |
Hyp |
Ref |
Expression |
0 |
|
cgbo |
⊢ GoldbachOdd |
1 |
|
vz |
⊢ 𝑧 |
2 |
|
codd |
⊢ Odd |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cprime |
⊢ ℙ |
5 |
|
vq |
⊢ 𝑞 |
6 |
|
vr |
⊢ 𝑟 |
7 |
3
|
cv |
⊢ 𝑝 |
8 |
7 2
|
wcel |
⊢ 𝑝 ∈ Odd |
9 |
5
|
cv |
⊢ 𝑞 |
10 |
9 2
|
wcel |
⊢ 𝑞 ∈ Odd |
11 |
6
|
cv |
⊢ 𝑟 |
12 |
11 2
|
wcel |
⊢ 𝑟 ∈ Odd |
13 |
8 10 12
|
w3a |
⊢ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) |
14 |
1
|
cv |
⊢ 𝑧 |
15 |
|
caddc |
⊢ + |
16 |
7 9 15
|
co |
⊢ ( 𝑝 + 𝑞 ) |
17 |
16 11 15
|
co |
⊢ ( ( 𝑝 + 𝑞 ) + 𝑟 ) |
18 |
14 17
|
wceq |
⊢ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) |
19 |
13 18
|
wa |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
20 |
19 6 4
|
wrex |
⊢ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
21 |
20 5 4
|
wrex |
⊢ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
22 |
21 3 4
|
wrex |
⊢ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
23 |
22 1 2
|
crab |
⊢ { 𝑧 ∈ Odd ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) } |
24 |
0 23
|
wceq |
⊢ GoldbachOdd = { 𝑧 ∈ Odd ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) } |