Step |
Hyp |
Ref |
Expression |
0 |
|
cgcd |
⊢ gcd |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cz |
⊢ ℤ |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
|
cc0 |
⊢ 0 |
6 |
4 5
|
wceq |
⊢ 𝑥 = 0 |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
7 5
|
wceq |
⊢ 𝑦 = 0 |
9 |
6 8
|
wa |
⊢ ( 𝑥 = 0 ∧ 𝑦 = 0 ) |
10 |
|
vn |
⊢ 𝑛 |
11 |
10
|
cv |
⊢ 𝑛 |
12 |
|
cdvds |
⊢ ∥ |
13 |
11 4 12
|
wbr |
⊢ 𝑛 ∥ 𝑥 |
14 |
11 7 12
|
wbr |
⊢ 𝑛 ∥ 𝑦 |
15 |
13 14
|
wa |
⊢ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) |
16 |
15 10 2
|
crab |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } |
17 |
|
cr |
⊢ ℝ |
18 |
|
clt |
⊢ < |
19 |
16 17 18
|
csup |
⊢ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) |
20 |
9 5 19
|
cif |
⊢ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) |
21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
22 |
0 21
|
wceq |
⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |