Metamath Proof Explorer


Definition df-gdiv

Description: Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-gdiv /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgs /𝑔
1 vg 𝑔
2 cgr GrpOp
3 vx 𝑥
4 1 cv 𝑔
5 4 crn ran 𝑔
6 vy 𝑦
7 3 cv 𝑥
8 cgn inv
9 4 8 cfv ( inv ‘ 𝑔 )
10 6 cv 𝑦
11 10 9 cfv ( ( inv ‘ 𝑔 ) ‘ 𝑦 )
12 7 11 4 co ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) )
13 3 6 5 5 12 cmpo ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) )
14 1 2 13 cmpt ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) )
15 0 14 wceq /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) )