Description: Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-gdiv | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cgs | ⊢ /𝑔 | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cgr | ⊢ GrpOp | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑔 | 
| 5 | 4 | crn | ⊢ ran 𝑔 | 
| 6 | vy | ⊢ 𝑦 | |
| 7 | 3 | cv | ⊢ 𝑥 | 
| 8 | cgn | ⊢ inv | |
| 9 | 4 8 | cfv | ⊢ ( inv ‘ 𝑔 ) | 
| 10 | 6 | cv | ⊢ 𝑦 | 
| 11 | 10 9 | cfv | ⊢ ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) | 
| 12 | 7 11 4 | co | ⊢ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) | 
| 13 | 3 6 5 5 12 | cmpo | ⊢ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) | 
| 14 | 1 2 13 | cmpt | ⊢ ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | 
| 15 | 0 14 | wceq | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |