Description: Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-gdiv | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgs | ⊢ /𝑔 | |
1 | vg | ⊢ 𝑔 | |
2 | cgr | ⊢ GrpOp | |
3 | vx | ⊢ 𝑥 | |
4 | 1 | cv | ⊢ 𝑔 |
5 | 4 | crn | ⊢ ran 𝑔 |
6 | vy | ⊢ 𝑦 | |
7 | 3 | cv | ⊢ 𝑥 |
8 | cgn | ⊢ inv | |
9 | 4 8 | cfv | ⊢ ( inv ‘ 𝑔 ) |
10 | 6 | cv | ⊢ 𝑦 |
11 | 10 9 | cfv | ⊢ ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) |
12 | 7 11 4 | co | ⊢ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) |
13 | 3 6 5 5 12 | cmpo | ⊢ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) |
14 | 1 2 13 | cmpt | ⊢ ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |
15 | 0 14 | wceq | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |