Step |
Hyp |
Ref |
Expression |
0 |
|
cghm |
⊢ GrpHom |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cgrp |
⊢ Grp |
3 |
|
vt |
⊢ 𝑡 |
4 |
|
vg |
⊢ 𝑔 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑠 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
8 |
|
vw |
⊢ 𝑤 |
9 |
4
|
cv |
⊢ 𝑔 |
10 |
8
|
cv |
⊢ 𝑤 |
11 |
3
|
cv |
⊢ 𝑡 |
12 |
11 5
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
13 |
10 12 9
|
wf |
⊢ 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) |
14 |
|
vx |
⊢ 𝑥 |
15 |
|
vy |
⊢ 𝑦 |
16 |
14
|
cv |
⊢ 𝑥 |
17 |
|
cplusg |
⊢ +g |
18 |
6 17
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
19 |
15
|
cv |
⊢ 𝑦 |
20 |
16 19 18
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
21 |
20 9
|
cfv |
⊢ ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) |
22 |
16 9
|
cfv |
⊢ ( 𝑔 ‘ 𝑥 ) |
23 |
11 17
|
cfv |
⊢ ( +g ‘ 𝑡 ) |
24 |
19 9
|
cfv |
⊢ ( 𝑔 ‘ 𝑦 ) |
25 |
22 24 23
|
co |
⊢ ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
26 |
21 25
|
wceq |
⊢ ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
27 |
26 15 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
28 |
27 14 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) |
29 |
13 28
|
wa |
⊢ ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) |
30 |
29 8 7
|
wsbc |
⊢ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) |
31 |
30 4
|
cab |
⊢ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } |
32 |
1 3 2 2 31
|
cmpo |
⊢ ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |
33 |
0 32
|
wceq |
⊢ GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |