Metamath Proof Explorer


Definition df-ghm

Description: A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion df-ghm GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔[ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cghm GrpHom
1 vs 𝑠
2 cgrp Grp
3 vt 𝑡
4 vg 𝑔
5 cbs Base
6 1 cv 𝑠
7 6 5 cfv ( Base ‘ 𝑠 )
8 vw 𝑤
9 4 cv 𝑔
10 8 cv 𝑤
11 3 cv 𝑡
12 11 5 cfv ( Base ‘ 𝑡 )
13 10 12 9 wf 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 )
14 vx 𝑥
15 vy 𝑦
16 14 cv 𝑥
17 cplusg +g
18 6 17 cfv ( +g𝑠 )
19 15 cv 𝑦
20 16 19 18 co ( 𝑥 ( +g𝑠 ) 𝑦 )
21 20 9 cfv ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) )
22 16 9 cfv ( 𝑔𝑥 )
23 11 17 cfv ( +g𝑡 )
24 19 9 cfv ( 𝑔𝑦 )
25 22 24 23 co ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) )
26 21 25 wceq ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) )
27 26 15 10 wral 𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) )
28 27 14 10 wral 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) )
29 13 28 wa ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) )
30 29 8 7 wsbc [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) )
31 30 4 cab { 𝑔[ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) ) }
32 1 3 2 2 31 cmpo ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔[ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) ) } )
33 0 32 wceq GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔[ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) ) } )