Step |
Hyp |
Ref |
Expression |
0 |
|
cghomOLD |
⊢ GrpOpHom |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cgr |
⊢ GrpOp |
3 |
|
vh |
⊢ ℎ |
4 |
|
vf |
⊢ 𝑓 |
5 |
4
|
cv |
⊢ 𝑓 |
6 |
1
|
cv |
⊢ 𝑔 |
7 |
6
|
crn |
⊢ ran 𝑔 |
8 |
3
|
cv |
⊢ ℎ |
9 |
8
|
crn |
⊢ ran ℎ |
10 |
7 9 5
|
wf |
⊢ 𝑓 : ran 𝑔 ⟶ ran ℎ |
11 |
|
vx |
⊢ 𝑥 |
12 |
|
vy |
⊢ 𝑦 |
13 |
11
|
cv |
⊢ 𝑥 |
14 |
13 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
15 |
12
|
cv |
⊢ 𝑦 |
16 |
15 5
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
17 |
14 16 8
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) |
18 |
13 15 6
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
19 |
18 5
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) |
20 |
17 19
|
wceq |
⊢ ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) |
21 |
20 12 7
|
wral |
⊢ ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) |
22 |
21 11 7
|
wral |
⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) |
23 |
10 22
|
wa |
⊢ ( 𝑓 : ran 𝑔 ⟶ ran ℎ ∧ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) ) |
24 |
23 4
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ran 𝑔 ⟶ ran ℎ ∧ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) ) } |
25 |
1 3 2 2 24
|
cmpo |
⊢ ( 𝑔 ∈ GrpOp , ℎ ∈ GrpOp ↦ { 𝑓 ∣ ( 𝑓 : ran 𝑔 ⟶ ran ℎ ∧ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) ) } ) |
26 |
0 25
|
wceq |
⊢ GrpOpHom = ( 𝑔 ∈ GrpOp , ℎ ∈ GrpOp ↦ { 𝑓 ∣ ( 𝑓 : ran 𝑔 ⟶ ran ℎ ∧ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑓 ‘ 𝑥 ) ℎ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝑔 𝑦 ) ) ) } ) |