Metamath Proof Explorer


Definition df-gim

Description: An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion df-gim GrpIso = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgim GrpIso
1 vs 𝑠
2 cgrp Grp
3 vt 𝑡
4 vg 𝑔
5 1 cv 𝑠
6 cghm GrpHom
7 3 cv 𝑡
8 5 7 6 co ( 𝑠 GrpHom 𝑡 )
9 4 cv 𝑔
10 cbs Base
11 5 10 cfv ( Base ‘ 𝑠 )
12 7 10 cfv ( Base ‘ 𝑡 )
13 11 12 9 wf1o 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 )
14 13 4 8 crab { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) }
15 1 3 2 2 14 cmpo ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } )
16 0 15 wceq GrpIso = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } )