Step |
Hyp |
Ref |
Expression |
0 |
|
cgn |
⊢ inv |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cgr |
⊢ GrpOp |
3 |
|
vx |
⊢ 𝑥 |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4
|
crn |
⊢ ran 𝑔 |
6 |
|
vz |
⊢ 𝑧 |
7 |
6
|
cv |
⊢ 𝑧 |
8 |
3
|
cv |
⊢ 𝑥 |
9 |
7 8 4
|
co |
⊢ ( 𝑧 𝑔 𝑥 ) |
10 |
|
cgi |
⊢ GId |
11 |
4 10
|
cfv |
⊢ ( GId ‘ 𝑔 ) |
12 |
9 11
|
wceq |
⊢ ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) |
13 |
12 6 5
|
crio |
⊢ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) |
14 |
3 5 13
|
cmpt |
⊢ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) |
15 |
1 2 14
|
cmpt |
⊢ ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) |
16 |
0 15
|
wceq |
⊢ inv = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) |