| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgn |
⊢ inv |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cgr |
⊢ GrpOp |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑔 |
| 5 |
4
|
crn |
⊢ ran 𝑔 |
| 6 |
|
vz |
⊢ 𝑧 |
| 7 |
6
|
cv |
⊢ 𝑧 |
| 8 |
3
|
cv |
⊢ 𝑥 |
| 9 |
7 8 4
|
co |
⊢ ( 𝑧 𝑔 𝑥 ) |
| 10 |
|
cgi |
⊢ GId |
| 11 |
4 10
|
cfv |
⊢ ( GId ‘ 𝑔 ) |
| 12 |
9 11
|
wceq |
⊢ ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) |
| 13 |
12 6 5
|
crio |
⊢ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) |
| 14 |
3 5 13
|
cmpt |
⊢ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) |
| 15 |
1 2 14
|
cmpt |
⊢ ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) |
| 16 |
0 15
|
wceq |
⊢ inv = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑧 ∈ ran 𝑔 ( 𝑧 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) |