Metamath Proof Explorer


Definition df-goan

Description: Define the Godel-set of conjunction. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goan 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ¬𝑔 ( 𝑢𝑔 𝑣 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoa 𝑔
1 vu 𝑢
2 cvv V
3 vv 𝑣
4 1 cv 𝑢
5 cgna 𝑔
6 3 cv 𝑣
7 4 6 5 co ( 𝑢𝑔 𝑣 )
8 7 cgon ¬𝑔 ( 𝑢𝑔 𝑣 )
9 1 3 2 2 8 cmpo ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ¬𝑔 ( 𝑢𝑔 𝑣 ) )
10 0 9 wceq 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ¬𝑔 ( 𝑢𝑔 𝑣 ) )