Metamath Proof Explorer


Definition df-gobi

Description: Define the Godel-set of equivalence. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gobi 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢𝑔 𝑣 ) ∧𝑔 ( 𝑣𝑔 𝑢 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgob 𝑔
1 vu 𝑢
2 cvv V
3 vv 𝑣
4 1 cv 𝑢
5 cgoi 𝑔
6 3 cv 𝑣
7 4 6 5 co ( 𝑢𝑔 𝑣 )
8 cgoa 𝑔
9 6 4 5 co ( 𝑣𝑔 𝑢 )
10 7 9 8 co ( ( 𝑢𝑔 𝑣 ) ∧𝑔 ( 𝑣𝑔 𝑢 ) )
11 1 3 2 2 10 cmpo ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢𝑔 𝑣 ) ∧𝑔 ( 𝑣𝑔 𝑢 ) ) )
12 0 11 wceq 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑢𝑔 𝑣 ) ∧𝑔 ( 𝑣𝑔 𝑢 ) ) )