Metamath Proof Explorer


Definition df-goel

Description: Define the Godel-set of membership. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) e.g 1o ) actually means v_0 e. v_1 , not 0 e. 1 . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goel 𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ ⟨ ∅ , 𝑥 ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoe 𝑔
1 vx 𝑥
2 com ω
3 2 2 cxp ( ω × ω )
4 c0
5 1 cv 𝑥
6 4 5 cop ⟨ ∅ , 𝑥
7 1 3 6 cmpt ( 𝑥 ∈ ( ω × ω ) ↦ ⟨ ∅ , 𝑥 ⟩ )
8 0 7 wceq 𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ ⟨ ∅ , 𝑥 ⟩ )