Metamath Proof Explorer


Definition df-goeq

Description: Define the Godel-set of equality. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) =g 1o ) actually means v_0 = v_1 , not 0 = 1 . Here we use the trick mentioned in ax-ext to introduce equality as a defined notion in terms of e.g . The expression suc ( u u. v ) = max ( u , v ) + 1 here is a convenient way of getting a dummy variable distinct from u and v . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goeq =𝑔 = ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ suc ( 𝑢𝑣 ) / 𝑤 𝑔 𝑤 ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoq =𝑔
1 vu 𝑢
2 com ω
3 vv 𝑣
4 1 cv 𝑢
5 3 cv 𝑣
6 4 5 cun ( 𝑢𝑣 )
7 6 csuc suc ( 𝑢𝑣 )
8 vw 𝑤
9 8 cv 𝑤
10 cgoe 𝑔
11 9 4 10 co ( 𝑤𝑔 𝑢 )
12 cgob 𝑔
13 9 5 10 co ( 𝑤𝑔 𝑣 )
14 11 13 12 co ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) )
15 14 9 cgol 𝑔 𝑤 ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) )
16 8 7 15 csb suc ( 𝑢𝑣 ) / 𝑤 𝑔 𝑤 ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) )
17 1 3 2 2 16 cmpo ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ suc ( 𝑢𝑣 ) / 𝑤 𝑔 𝑤 ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) ) )
18 0 17 wceq =𝑔 = ( 𝑢 ∈ ω , 𝑣 ∈ ω ↦ suc ( 𝑢𝑣 ) / 𝑤 𝑔 𝑤 ( ( 𝑤𝑔 𝑢 ) ↔𝑔 ( 𝑤𝑔 𝑣 ) ) )