Metamath Proof Explorer


Definition df-goim

Description: Define the Godel-set of implication. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goim 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( 𝑢𝑔 ¬𝑔 𝑣 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoi 𝑔
1 vu 𝑢
2 cvv V
3 vv 𝑣
4 1 cv 𝑢
5 cgna 𝑔
6 3 cv 𝑣
7 6 cgon ¬𝑔 𝑣
8 4 7 5 co ( 𝑢𝑔 ¬𝑔 𝑣 )
9 1 3 2 2 8 cmpo ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( 𝑢𝑔 ¬𝑔 𝑣 ) )
10 0 9 wceq 𝑔 = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( 𝑢𝑔 ¬𝑔 𝑣 ) )