| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cgr | 
							⊢ GrpOp  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							⊢ 𝑔  | 
						
						
							| 2 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 3 | 
							
								1
							 | 
							cv | 
							⊢ 𝑔  | 
						
						
							| 4 | 
							
								2
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 5 | 
							
								4 4
							 | 
							cxp | 
							⊢ ( 𝑡  ×  𝑡 )  | 
						
						
							| 6 | 
							
								5 4 3
							 | 
							wf | 
							⊢ 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  | 
						
						
							| 7 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 8 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 9 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 10 | 
							
								7
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 11 | 
							
								8
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 12 | 
							
								10 11 3
							 | 
							co | 
							⊢ ( 𝑥 𝑔 𝑦 )  | 
						
						
							| 13 | 
							
								9
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 14 | 
							
								12 13 3
							 | 
							co | 
							⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  | 
						
						
							| 15 | 
							
								11 13 3
							 | 
							co | 
							⊢ ( 𝑦 𝑔 𝑧 )  | 
						
						
							| 16 | 
							
								10 15 3
							 | 
							co | 
							⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							wceq | 
							⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  | 
						
						
							| 18 | 
							
								17 9 4
							 | 
							wral | 
							⊢ ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  | 
						
						
							| 19 | 
							
								18 8 4
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  | 
						
						
							| 20 | 
							
								19 7 4
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							vu | 
							⊢ 𝑢  | 
						
						
							| 22 | 
							
								21
							 | 
							cv | 
							⊢ 𝑢  | 
						
						
							| 23 | 
							
								22 10 3
							 | 
							co | 
							⊢ ( 𝑢 𝑔 𝑥 )  | 
						
						
							| 24 | 
							
								23 10
							 | 
							wceq | 
							⊢ ( 𝑢 𝑔 𝑥 )  =  𝑥  | 
						
						
							| 25 | 
							
								11 10 3
							 | 
							co | 
							⊢ ( 𝑦 𝑔 𝑥 )  | 
						
						
							| 26 | 
							
								25 22
							 | 
							wceq | 
							⊢ ( 𝑦 𝑔 𝑥 )  =  𝑢  | 
						
						
							| 27 | 
							
								26 8 4
							 | 
							wrex | 
							⊢ ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢  | 
						
						
							| 28 | 
							
								24 27
							 | 
							wa | 
							⊢ ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 )  | 
						
						
							| 29 | 
							
								28 7 4
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 )  | 
						
						
							| 30 | 
							
								29 21 4
							 | 
							wrex | 
							⊢ ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 )  | 
						
						
							| 31 | 
							
								6 20 30
							 | 
							w3a | 
							⊢ ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) )  | 
						
						
							| 32 | 
							
								31 2
							 | 
							wex | 
							⊢ ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) )  | 
						
						
							| 33 | 
							
								32 1
							 | 
							cab | 
							⊢ { 𝑔  ∣  ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) }  | 
						
						
							| 34 | 
							
								0 33
							 | 
							wceq | 
							⊢ GrpOp  =  { 𝑔  ∣  ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) }  |