Step |
Hyp |
Ref |
Expression |
0 |
|
cgr |
⊢ GrpOp |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
vt |
⊢ 𝑡 |
3 |
1
|
cv |
⊢ 𝑔 |
4 |
2
|
cv |
⊢ 𝑡 |
5 |
4 4
|
cxp |
⊢ ( 𝑡 × 𝑡 ) |
6 |
5 4 3
|
wf |
⊢ 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
vy |
⊢ 𝑦 |
9 |
|
vz |
⊢ 𝑧 |
10 |
7
|
cv |
⊢ 𝑥 |
11 |
8
|
cv |
⊢ 𝑦 |
12 |
10 11 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
13 |
9
|
cv |
⊢ 𝑧 |
14 |
12 13 3
|
co |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
15 |
11 13 3
|
co |
⊢ ( 𝑦 𝑔 𝑧 ) |
16 |
10 15 3
|
co |
⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
17 |
14 16
|
wceq |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
18 |
17 9 4
|
wral |
⊢ ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
19 |
18 8 4
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
20 |
19 7 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
21 |
|
vu |
⊢ 𝑢 |
22 |
21
|
cv |
⊢ 𝑢 |
23 |
22 10 3
|
co |
⊢ ( 𝑢 𝑔 𝑥 ) |
24 |
23 10
|
wceq |
⊢ ( 𝑢 𝑔 𝑥 ) = 𝑥 |
25 |
11 10 3
|
co |
⊢ ( 𝑦 𝑔 𝑥 ) |
26 |
25 22
|
wceq |
⊢ ( 𝑦 𝑔 𝑥 ) = 𝑢 |
27 |
26 8 4
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 |
28 |
24 27
|
wa |
⊢ ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
29 |
28 7 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
30 |
29 21 4
|
wrex |
⊢ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
31 |
6 20 30
|
w3a |
⊢ ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
32 |
31 2
|
wex |
⊢ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
33 |
32 1
|
cab |
⊢ { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |
34 |
0 33
|
wceq |
⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |