| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cgr | ⊢ GrpOp | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | vt | ⊢ 𝑡 | 
						
							| 3 | 1 | cv | ⊢ 𝑔 | 
						
							| 4 | 2 | cv | ⊢ 𝑡 | 
						
							| 5 | 4 4 | cxp | ⊢ ( 𝑡  ×  𝑡 ) | 
						
							| 6 | 5 4 3 | wf | ⊢ 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡 | 
						
							| 7 |  | vx | ⊢ 𝑥 | 
						
							| 8 |  | vy | ⊢ 𝑦 | 
						
							| 9 |  | vz | ⊢ 𝑧 | 
						
							| 10 | 7 | cv | ⊢ 𝑥 | 
						
							| 11 | 8 | cv | ⊢ 𝑦 | 
						
							| 12 | 10 11 3 | co | ⊢ ( 𝑥 𝑔 𝑦 ) | 
						
							| 13 | 9 | cv | ⊢ 𝑧 | 
						
							| 14 | 12 13 3 | co | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) | 
						
							| 15 | 11 13 3 | co | ⊢ ( 𝑦 𝑔 𝑧 ) | 
						
							| 16 | 10 15 3 | co | ⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) | 
						
							| 17 | 14 16 | wceq | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) | 
						
							| 18 | 17 9 4 | wral | ⊢ ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) | 
						
							| 19 | 18 8 4 | wral | ⊢ ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) | 
						
							| 20 | 19 7 4 | wral | ⊢ ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) | 
						
							| 21 |  | vu | ⊢ 𝑢 | 
						
							| 22 | 21 | cv | ⊢ 𝑢 | 
						
							| 23 | 22 10 3 | co | ⊢ ( 𝑢 𝑔 𝑥 ) | 
						
							| 24 | 23 10 | wceq | ⊢ ( 𝑢 𝑔 𝑥 )  =  𝑥 | 
						
							| 25 | 11 10 3 | co | ⊢ ( 𝑦 𝑔 𝑥 ) | 
						
							| 26 | 25 22 | wceq | ⊢ ( 𝑦 𝑔 𝑥 )  =  𝑢 | 
						
							| 27 | 26 8 4 | wrex | ⊢ ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 | 
						
							| 28 | 24 27 | wa | ⊢ ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) | 
						
							| 29 | 28 7 4 | wral | ⊢ ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) | 
						
							| 30 | 29 21 4 | wrex | ⊢ ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) | 
						
							| 31 | 6 20 30 | w3a | ⊢ ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) | 
						
							| 32 | 31 2 | wex | ⊢ ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) | 
						
							| 33 | 32 1 | cab | ⊢ { 𝑔  ∣  ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) } | 
						
							| 34 | 0 33 | wceq | ⊢ GrpOp  =  { 𝑔  ∣  ∃ 𝑡 ( 𝑔 : ( 𝑡  ×  𝑡 ) ⟶ 𝑡  ∧  ∀ 𝑥  ∈  𝑡 ∀ 𝑦  ∈  𝑡 ∀ 𝑧  ∈  𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ∧  ∃ 𝑢  ∈  𝑡 ∀ 𝑥  ∈  𝑡 ( ( 𝑢 𝑔 𝑥 )  =  𝑥  ∧  ∃ 𝑦  ∈  𝑡 ( 𝑦 𝑔 𝑥 )  =  𝑢 ) ) } |