Metamath Proof Explorer


Definition df-grpo

Description: Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of Herstein p. 54. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Assertion df-grpo GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgr GrpOp
1 vg 𝑔
2 vt 𝑡
3 1 cv 𝑔
4 2 cv 𝑡
5 4 4 cxp ( 𝑡 × 𝑡 )
6 5 4 3 wf 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡
7 vx 𝑥
8 vy 𝑦
9 vz 𝑧
10 7 cv 𝑥
11 8 cv 𝑦
12 10 11 3 co ( 𝑥 𝑔 𝑦 )
13 9 cv 𝑧
14 12 13 3 co ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )
15 11 13 3 co ( 𝑦 𝑔 𝑧 )
16 10 15 3 co ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
17 14 16 wceq ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
18 17 9 4 wral 𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
19 18 8 4 wral 𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
20 19 7 4 wral 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
21 vu 𝑢
22 21 cv 𝑢
23 22 10 3 co ( 𝑢 𝑔 𝑥 )
24 23 10 wceq ( 𝑢 𝑔 𝑥 ) = 𝑥
25 11 10 3 co ( 𝑦 𝑔 𝑥 )
26 25 22 wceq ( 𝑦 𝑔 𝑥 ) = 𝑢
27 26 8 4 wrex 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢
28 24 27 wa ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 )
29 28 7 4 wral 𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 )
30 29 21 4 wrex 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 )
31 6 20 30 w3a ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) )
32 31 2 wex 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) )
33 32 1 cab { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) }
34 0 33 wceq GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡𝑧𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢𝑡𝑥𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) }