Metamath Proof Explorer


Definition df-h0op

Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-h0op 0hop = ( proj ‘ 0 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ch0o 0hop
1 cpjh proj
2 c0h 0
3 2 1 cfv ( proj ‘ 0 )
4 0 3 wceq 0hop = ( proj ‘ 0 )