Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-h0op | ⊢ 0hop = ( projℎ ‘ 0ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ch0o | ⊢ 0hop | |
1 | cpjh | ⊢ projℎ | |
2 | c0h | ⊢ 0ℋ | |
3 | 2 1 | cfv | ⊢ ( projℎ ‘ 0ℋ ) |
4 | 0 3 | wceq | ⊢ 0hop = ( projℎ ‘ 0ℋ ) |