Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v . (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-h0v | ⊢ 0ℎ = ( 0vec ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c0v | ⊢ 0ℎ | |
1 | cn0v | ⊢ 0vec | |
2 | cva | ⊢ +ℎ | |
3 | csm | ⊢ ·ℎ | |
4 | 2 3 | cop | ⊢ 〈 +ℎ , ·ℎ 〉 |
5 | cno | ⊢ normℎ | |
6 | 4 5 | cop | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
7 | 6 1 | cfv | ⊢ ( 0vec ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
8 | 0 7 | wceq | ⊢ 0ℎ = ( 0vec ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |