Step |
Hyp |
Ref |
Expression |
0 |
|
chash |
⊢ ♯ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
1
|
cv |
⊢ 𝑥 |
4 |
|
caddc |
⊢ + |
5 |
|
c1 |
⊢ 1 |
6 |
3 5 4
|
co |
⊢ ( 𝑥 + 1 ) |
7 |
1 2 6
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) |
8 |
|
cc0 |
⊢ 0 |
9 |
7 8
|
crdg |
⊢ rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) |
10 |
|
com |
⊢ ω |
11 |
9 10
|
cres |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
12 |
|
ccrd |
⊢ card |
13 |
11 12
|
ccom |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) |
14 |
|
cfn |
⊢ Fin |
15 |
2 14
|
cdif |
⊢ ( V ∖ Fin ) |
16 |
|
cpnf |
⊢ +∞ |
17 |
16
|
csn |
⊢ { +∞ } |
18 |
15 17
|
cxp |
⊢ ( ( V ∖ Fin ) × { +∞ } ) |
19 |
13 18
|
cun |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
20 |
0 19
|
wceq |
⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |