| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chash |
⊢ ♯ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
1
|
cv |
⊢ 𝑥 |
| 4 |
|
caddc |
⊢ + |
| 5 |
|
c1 |
⊢ 1 |
| 6 |
3 5 4
|
co |
⊢ ( 𝑥 + 1 ) |
| 7 |
1 2 6
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) |
| 8 |
|
cc0 |
⊢ 0 |
| 9 |
7 8
|
crdg |
⊢ rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) |
| 10 |
|
com |
⊢ ω |
| 11 |
9 10
|
cres |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 12 |
|
ccrd |
⊢ card |
| 13 |
11 12
|
ccom |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) |
| 14 |
|
cfn |
⊢ Fin |
| 15 |
2 14
|
cdif |
⊢ ( V ∖ Fin ) |
| 16 |
|
cpnf |
⊢ +∞ |
| 17 |
16
|
csn |
⊢ { +∞ } |
| 18 |
15 17
|
cxp |
⊢ ( ( V ∖ Fin ) × { +∞ } ) |
| 19 |
13 18
|
cun |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 20 |
0 19
|
wceq |
⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |