Metamath Proof Explorer


Definition df-hfmul

Description: Define the scalar product with a Hilbert space functional. Definition of Beran p. 111. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfmul ·fn = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chft ·fn
1 vf 𝑓
2 cc
3 vg 𝑔
4 cmap m
5 chba
6 2 5 4 co ( ℂ ↑m ℋ )
7 vx 𝑥
8 1 cv 𝑓
9 cmul ·
10 3 cv 𝑔
11 7 cv 𝑥
12 11 10 cfv ( 𝑔𝑥 )
13 8 12 9 co ( 𝑓 · ( 𝑔𝑥 ) )
14 7 5 13 cmpt ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) )
15 1 3 2 6 14 cmpo ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )
16 0 15 wceq ·fn = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )