Metamath Proof Explorer


Definition df-hfsum

Description: Define the sum of two Hilbert space functionals. Definition of Beran p. 111. Note that unlike some authors, we define a functional as any function from ~H to CC , not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfsum +fn = ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) + ( 𝑔𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chfs +fn
1 vf 𝑓
2 cc
3 cmap m
4 chba
5 2 4 3 co ( ℂ ↑m ℋ )
6 vg 𝑔
7 vx 𝑥
8 1 cv 𝑓
9 7 cv 𝑥
10 9 8 cfv ( 𝑓𝑥 )
11 caddc +
12 6 cv 𝑔
13 9 12 cfv ( 𝑔𝑥 )
14 10 13 11 co ( ( 𝑓𝑥 ) + ( 𝑔𝑥 ) )
15 7 4 14 cmpt ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) + ( 𝑔𝑥 ) ) )
16 1 6 5 5 15 cmpo ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) + ( 𝑔𝑥 ) ) ) )
17 0 16 wceq +fn = ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) + ( 𝑔𝑥 ) ) ) )