| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							chlg | 
							⊢ hlG  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							⊢ 𝑔  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vc | 
							⊢ 𝑐  | 
						
						
							| 4 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							⊢ 𝑔  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑔 )  | 
						
						
							| 7 | 
							
								
							 | 
							va | 
							⊢ 𝑎  | 
						
						
							| 8 | 
							
								
							 | 
							vb | 
							⊢ 𝑏  | 
						
						
							| 9 | 
							
								7
							 | 
							cv | 
							⊢ 𝑎  | 
						
						
							| 10 | 
							
								9 6
							 | 
							wcel | 
							⊢ 𝑎  ∈  ( Base ‘ 𝑔 )  | 
						
						
							| 11 | 
							
								8
							 | 
							cv | 
							⊢ 𝑏  | 
						
						
							| 12 | 
							
								11 6
							 | 
							wcel | 
							⊢ 𝑏  ∈  ( Base ‘ 𝑔 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							wa | 
							⊢ ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  | 
						
						
							| 14 | 
							
								3
							 | 
							cv | 
							⊢ 𝑐  | 
						
						
							| 15 | 
							
								9 14
							 | 
							wne | 
							⊢ 𝑎  ≠  𝑐  | 
						
						
							| 16 | 
							
								11 14
							 | 
							wne | 
							⊢ 𝑏  ≠  𝑐  | 
						
						
							| 17 | 
							
								
							 | 
							citv | 
							⊢ Itv  | 
						
						
							| 18 | 
							
								5 17
							 | 
							cfv | 
							⊢ ( Itv ‘ 𝑔 )  | 
						
						
							| 19 | 
							
								14 11 18
							 | 
							co | 
							⊢ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							wcel | 
							⊢ 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  | 
						
						
							| 21 | 
							
								14 9 18
							 | 
							co | 
							⊢ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 )  | 
						
						
							| 22 | 
							
								11 21
							 | 
							wcel | 
							⊢ 𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							wo | 
							⊢ ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) )  | 
						
						
							| 24 | 
							
								15 16 23
							 | 
							w3a | 
							⊢ ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) )  | 
						
						
							| 25 | 
							
								13 24
							 | 
							wa | 
							⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) )  | 
						
						
							| 26 | 
							
								25 7 8
							 | 
							copab | 
							⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) }  | 
						
						
							| 27 | 
							
								3 6 26
							 | 
							cmpt | 
							⊢ ( 𝑐  ∈  ( Base ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } )  | 
						
						
							| 28 | 
							
								1 2 27
							 | 
							cmpt | 
							⊢ ( 𝑔  ∈  V  ↦  ( 𝑐  ∈  ( Base ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) )  | 
						
						
							| 29 | 
							
								0 28
							 | 
							wceq | 
							⊢ hlG  =  ( 𝑔  ∈  V  ↦  ( 𝑐  ∈  ( Base ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) )  |