Metamath Proof Explorer


Definition df-hmeo

Description: Function returning all the homeomorphisms from topology j to topology k . (Contributed by FL, 14-Feb-2007)

Ref Expression
Assertion df-hmeo Homeo = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chmeo Homeo
1 vj 𝑗
2 ctop Top
3 vk 𝑘
4 vf 𝑓
5 1 cv 𝑗
6 ccn Cn
7 3 cv 𝑘
8 5 7 6 co ( 𝑗 Cn 𝑘 )
9 4 cv 𝑓
10 9 ccnv 𝑓
11 7 5 6 co ( 𝑘 Cn 𝑗 )
12 10 11 wcel 𝑓 ∈ ( 𝑘 Cn 𝑗 )
13 12 4 8 crab { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) }
14 1 3 2 2 13 cmpo ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) } )
15 0 14 wceq Homeo = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) } )