Metamath Proof Explorer


Definition df-hmo

Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hmo HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chmo HmOp
1 vu 𝑢
2 cnv NrmCVec
3 vt 𝑡
4 1 cv 𝑢
5 caj adj
6 4 4 5 co ( 𝑢 adj 𝑢 )
7 6 cdm dom ( 𝑢 adj 𝑢 )
8 3 cv 𝑡
9 8 6 cfv ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 )
10 9 8 wceq ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡
11 10 3 7 crab { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 }
12 1 2 11 cmpt ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } )
13 0 12 wceq HmOp = ( 𝑢 ∈ NrmCVec ↦ { 𝑡 ∈ dom ( 𝑢 adj 𝑢 ) ∣ ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 ) = 𝑡 } )