Metamath Proof Explorer


Definition df-hmop

Description: Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hmop HrmOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cho HrmOp
1 vt 𝑡
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vx 𝑥
6 vy 𝑦
7 5 cv 𝑥
8 csp ·ih
9 1 cv 𝑡
10 6 cv 𝑦
11 10 9 cfv ( 𝑡𝑦 )
12 7 11 8 co ( 𝑥 ·ih ( 𝑡𝑦 ) )
13 7 9 cfv ( 𝑡𝑥 )
14 13 10 8 co ( ( 𝑡𝑥 ) ·ih 𝑦 )
15 12 14 wceq ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 )
16 15 6 2 wral 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 )
17 16 5 2 wral 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 )
18 17 1 4 crab { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) }
19 0 18 wceq HrmOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) }